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A STUDY OF EXPLOSIVE WAVE PROPAGATION IN

GRANULAR MATERIALS WITH MICHOSTRUCTURE

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Traditionally, in engineering practice, all stress analyses are conducted

within the framework of various branches of continuum mechanics. In doing so,

it is tacitly assumed that the microstructural details of the material can be

neglected. The material is then "replaced" by an equivalent continuum with

gross, or "overall," properties. The continuum approach has indeed been very

successful and has led to the development of many useful theories of material

characterization. On the other, hand, since these theories disregard the

microstructural details of the materials under study, they cannot be used to

determine how local structure influences the gross behavior of the material.

This is a real shortcoming of the continuum theories, especially when they are

applied for characterization of geological materials such as sand, clay and/or

rock. These types of materials are commonly classified as materials with

microstructure since, at the micro level, the density, along with other

important variables, are not continuous. Modeling of these materials using

classical continuum mechanics (e.g., elasticity, plasticity, viscoelasticity,

etc.) has progressed to a point where any fundamentally new information will

probably have to come from a theory incorporating properties such as grain

size, local porosity, packing, etc. Some advances have been made recently in

developing analytical tools and models, which account for some of the struc-

tural details of particulate materials such as sand. Two examples of such

work are: (1) the so-called "distributed body" concept advanced by Goodman

and Cowin (Reference 31) and (2) "discrete element" modeling pioneered by

Cundall (Reference 20). The central theme of the distributed body concept is

the introduction of the "volume distribution function" (a new kinematic

variable) which accounts for local porosity and its spatial gradient. The

discrete element concept is basically a numerical procedure requiring large

computer simulations of grain-to-grain interaction.

I1
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The objective of this investigation was to develop a theoretical frain -

work, and the associated computer software, based on the distributed body .

concept for studying plane wave propagation in granular materials due to .

airblast loading. This theory will allow specific relationships to be devel-

oped between microstructure and wave propagation variables. Wave propagation

studies based on the distributed body concept were originally conducted by

Nunziato, Walsh, et al. (References 57-63). The present investigation will

extend their pioneering work to incorporate (1) a more realistic depth-

dependent volume distribution function simulating gravity effects in granular

soil, (2) arbitrary surface input including finite times for loading and

unloading waves, and (3) probabilistic considerations for treating non-un l'rm

grain size and random distribution of local porosity.

1.2 SCOPE

Chapter 2 contains a literature study of previous work in micromechanics

and a summary of the Nunziato, Walsh, et al., distributed body wave propaga--

tLon studies. Extension of this theory to include items I through 3 in the

above paragraph is documented in Chapter 3. Parametric results from the

extended theory are presented in Chapter 4. A summary and recommendations are

given in Chapter 5. Finally, a user's guide for the microstructural wave

propagation code MICID is given in Appendix A.

*p./
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CHAPTER 2

REVIEW OF PREVIOUS WORK

2.1 GENERAL BACKGROUND

Studies of geological materials with microstructure started many years

ago with research on granular materials modeled as aggregate assemblies of

discs or spheres. An excellent review article by Deresiewicz (Reference 22)

presents both static and dynamic studies prior to 1958. Another more recent

review article by Krizek (Reference 48) appeared in 1971, and presented

basically the dynamic response of cohesionless granular soils. Three recent

symposia on this subject (References 16, 45, and 83) have indicated renewed

research interest.

The concept of modeling granular media as an array of elastic particles

(spheres or discs) lead to the initial attempts at predicting wave propagation

through such media. Early work by Ilda (References 41 and 42), Takahashi and

Sato (Reference 79), Hughes and Cross (Reference 39), Hughes and Kelly

(Reference 40), Gassman (Reference 33) and Brandt (Reference 4) employed a

normal granular contact force concept. This initial work investigated the

propagation velocity as a function of confining pressure, particle size and

aggregate geometry.

It was discovered, however, that the classical theory of contact due only

to normal forces does not, in general, accurately model real materials. With

this in mind, Duffy and Mindlin (Reference 26) proposed a theory for granular

media which included both normal and tangential contact forces. This theory

produced a nonlinear and inelastic stress-strain relation. Hendron

(Reference 34) has also done work in this area.

More recent theories of granular media have included statistical-

stochastic approaches, e.g., Hudson (Reference 38), Fletcher (Reference 29),

Fu (Reference 30), Chambre (Reference 9), Varadan, et al., (Reference 81) and

Endley and Peyrot (Reference 28). Quite recently, Mroz (Reference 53) and Kuo

(Reference 49) employed continuum plasticity concepts and general contact

theory in an attempt to unify the treatment of granular materials at both the

particulate and continuum levels. Cundall, et al., (References 20 and 21)

proposed a numerical method called the discrete element technique for granular

and rock assemblies, and Brown, et al., (Reference 5) have used this approach

for rubble screens. Morland (Reference 52) considered a rock/granular media

3



as a regularly jointed media and used an anisotropic elasticity approach.

Particulate media has also been studied by Hill and Harr (Reference 36) based

upon a diffusion equation derived from probabilistic models, while Soo

(Reference 78) has considered the dynamic interactions of granules. Rohani,

et al., (References 43, 71, and 72) have been doing wave propagation research

in this area for granular sands and layered soils using continuum models.

Endochronic theories have also been applied to granular soils, e.g., Read and

Valanis (Reference 70), Lin and Wu (Reference 50), and Bazant, et al.,

(Reference 2). Studies have been made of the propagation of waves through

elastic materials containing spherical inclusions, e.g., Mal and Bose (Refer-

ence 51). Bleich, et al., (Reference 3) employed an elastic-plastic consitu-

tive law to model a specific geomechanics boundary value problem. Wluid

saturated granular media have been studied by Garg, et al. (Reference 32),

Hsieh and Yew (Reference 37), Vardoulakis and Beskos (Reference 82) and

Zienklewcz and Shiomi (Reference 84). Nachlinger and Nunztato (Reference 55)

used an internal state variable approach to wave propagation problems. Modern

mixture theories (References 25, 64-66, 68, and 69) also show some promise of

modeling porous and/or granular media.

With regard to experimental work, the method of photoelasticity has been

used. This particular method is quite well suited for studying the detailed

load transfer between individual granules as whole field data are obtaned

during the experiment. Photoelasticity has been used for granular media by

Drescher and de Josselin de Jong (Reference 23), Drescher (Reference 24), and

Durelli and Wu (Reference 27). This work was, however, only for static

behavior. The only dynamic analysts of granular media employing photoelastL.c-

ity was performed by Rossmanith and Shukla (Reference 75). Their technique

employed the use of high speed photography to record wave propagation through

an assembly of birefringent discs.

Of the previous work, three new constitutive theories which show special

promise in modeling granular and porous media are: the so-called "pore-

collapse" models (References 6-8, 33, 46, and 47); the microstructural models

based upon "fabric tensors" (References 11, 44, 45, 56, and 67); and the

Goodman-Cowin distributed body approach (References 1, 12-18, 31, and 80).

The pore-collapse model, originally developed by Carrol and Holt, is based

upon the collapse of a single pore within the media. Researchers at the

Sandia National Laboratories have used this approach with some success to

4
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model the dynamic response of porous and granular media. This theory,

however, cannot relate the effects of neighboring pores on one another, and,

hence, the effect of pore distribution cannot be accounted for. With regard

to the Goodman-Cowin distributed body theory, the medium is assumed to be

distributed in space by an independent kinematical function called the volume

distribution function. Nunziato, Walsh , et al., (References 57-63) have

applied this theory to several wave propagation studies and found success in

modeling particular situations. Consequently, this particular theory looks

quite fruitful. The fabric tensor models proposed by Oda, Nemat-Nasser, et

al., (Reference 67) also look promising: however, their application to

specific boundary value problems appears to be several years away. At

present, they are looking at the details of the microstructural fabric, and

they eventually may give insight as to the nature of the volume distribution

function for a Goodman-Cowin body.

2.2 DISTRIBUTED BODY THEORY

The distributed body theory originally developed by Cowin and Goodman was

constructed to allow a continuum theory to be applied to materials with

noncontinuous fields of mass density, stress, body force, etc. Thus, the

model could be used to describe the behavior of a wide variety of materials

having granular and/or porous structures. Fundamental to the theory is the

assumption that, at any point In the material, the overall mass density p

may be written as

p = vY (2.1)

where Y is the density of the granules (or matrix material) and v = v (X,t)

is referred to as the volume distribution function. This function describes

the way the medium is distributed in space allowing for voids or other

particular granular structures. Thus, the theory uncouples the mass density

of the granules from the mass density of the entire material, and allows

compressibility due to both granule compressibility and void compaction. In

general, 0 < v < 1 , and v is related to the porosity n and void ratio

e by the expression

V1 (2.2)

5
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Within a one-dimensional framework, the classical balance law of conser-

vation of linear momentum reads

PoX a LT I pob (2.3)

where T is the stress, b is the body force, x is the particle position,

x is the particle acceleration, X is the reference position coordinate, and

subscript o denotes values in reference state. In addition to this

classical balance law, the distributed body theory also requires an indepen-

dent balance equation governing the volume distribution. In one dimension,

this second equation governing void change is given by

"" h
pok v= + p g (2.4)

where k is called the equilibrated inertia, h the equilibrated stress and

g the intrinsic body force. Physical interpretation of the microstructural

variables k , h and g is somewhat difficult to make. In general, these

variables are related to the local contact mechanics at the granular level and

can be related to particular self-equilibrated singular stress states from

classical elasticity (e.g., double force systems, centers of dilatation). It

has been proposed (Reference 63) that k is related to the void mean surface

area and to the number of voids present, h is a result of the interaction

forces between nieghboring voids and will vanish when the voids are suffi-

ciently separated, and g is related to the coupling between the total

deformation of the medium and the changes in void volume.

For granular geological materials, we assume that the media is composed

of compressible granules at relatively high confining pressures so as to

prevent material flow. For this case, an appropriate constitutive formulation

would read
~ 1

T - T (v C) (2.5)

and, hence, the stress depends upon the reference and current volume distri-

butions, the gradient of the volume distribution, and the strain c . An

explicit form of Equation 2.5 which has been proposed (References 31 and 61)

uses an even quadratic form in the gradient of v

6
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T1 v A(vo, V, E) + a(V , v, (2.6)
2 o ax

where A and a are two material functions of the indicated variables.

First and second order moduli defined by

[T v [A + a
a - E 2 E a
2a: T I V r 2]

[-yivA +- C-)] (2.7)
cc 2 cc ax

will be needed for subsequent wave analyses. Normally E > 0 , but the second

order modulus E may be positive or negative.

2.3 WAVE PROPAGATION WITHIN A DISTRIBUTED BODY

As previously mentioned, the wave propagation theories set forth by

Nunziato, Walsh and coworkers for Goodman-Cowin distributed bodies appear to

have excellent promise for application to granular geological materials. This

section will briefly review some basic details and previous results about

these theories.

The basic premise of this particular wave theory lies in modeling the

wave as a propagating singular surface across which there exists a jump

discontinuity in a particular variable. Commonly dynamic loadings will

produce second-order acceleration waves, having a jump discontinuity in the

particle acceleration at the wave front. In some cases, however, the loading

could produce a first-order shock wave, having a jump in the particle velocity

at the wave front. Most modeling in these materials has been done for accel-

eration waves, and this case will now be described.

As mentioned, a wave is modeled as a propagating singular surface of zero

thickness with speed U , see Figure 2.1. The jump of a quantity * across

this surface is defined by

[+ - - (2.8)

where * and - are the limiting values of * immediately ahead of and

behind the wave. An acceleration wave is therefore defined as a wave across
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which the particle velocity, strain, and volume distribution are continuous

but their spatial and temporal derivatives are not. Thus, this type of motion

carries propagating discontinuities in the particle acceleration and various

other gradients of the strain and volume distribution. The jump in the parti-

cle acceleration Ex] is called the wave amplitude, and will be denoted by

a(t) . Note that for compressive waves, a(t) > 0 , while for expansive

waves, a(t) < 0 .

Following singular surface analysis procedures which have now become

somewhat standardized (Reference 10), Nunziato, et al., developed the follow-

ing expressions for two different types of waves

2 . i C2 + C2 + a - 2 2

IUF 2[C1 a. C+(C 1 -C 2) + 4

2 1 2 2 2 2
U . . C , + C- C1 - C2 ) + 40 (2.9)

where

2 NT )+  (hVx )+ + (hf) +(T Vx)+
C (vT) , 2 = _ = (V-) 2 (2.10)

P 0V 0P p kP°oo~ V-0  P k

with subscripts c , v , and X meaning partial differentiation with respect

to the indicated variable, and (.)+ meaning immediately ahead of the wave.

The speed UF denotes the "fast" wave speed which is associated predominantly

with the elasticity of the granules. The quantity Us  is the "slow" wave

speed and is connected to the compressibility of the material due to consoli-

dation.

The wave amplitude a , which is equal to the jump discontinuity in the

acceleration across the wave front, has also been studied. Nunziato, et al.,

have found that the amplitude for one-dimensional wave propagation satisfies

the following nonlinear Bernoulli equation

da 2
d = K(X)a - I(X)a (2.11)

where U(X) and (X) are material coefficients given in general by rather

lengthy expressions. The coefficient p(X) is related to dispersive effects,

8



while K(X) reflects both the elastic response of the granules and dispersive

effects. Depending on the nature of K and M , the theory can predict

growth or decay of wave amplitude.

Nunziato, et al., (Reference 61) presented an application of these

general theoretical results to a specific granular medium, PBX-9404 (an explo-

sive powder). They chose a volume distribution to ibe periodic in nature,

i.e.,

2iX
vo(X) = a + (1 - Va) cos-- (2.12)

where va is a material constant, and t is a characteristic length presuma-

bly related to the grain size. For PBX-9404, va " 0.984 and

I = 1.5 mm were chosen. The specific constitutive form for this application

was selected as that given in Equation 2.6.

Using the previous specific forms and assuming that the wave starts at

X - 0 in a granule, the fast wave speed becomes

UF U2 [1 - M2 sin T ]  (2.13)

where U is the wave speed in a granule and

2 2
2 2(1 -v) v

M 2 2 2 (ac)o (2.1J4)
Y 0U 9 1o

In attempting to compare with experimental data, Nunziato, et al.,

(Reference 61) point out that what is actually measured Is the transit time of

the wave T . This quantity is a function of the propagation distance X

and is related to the average wave velocity U by the expression

xU(x) = (2. 15)

Applying this to the fast wave, one can write I
T(x)= J U() - 6 [ d. (2.16)

0 F [1 2 sin2

I I I



which can be expressed in terms of an elliptic integral of the first kind F

ie

r(X) = - F(2wX/L,M) (2.17)

Using the boundary condition T() - - , with known values of Ug P Ti , and

I yields an equation whose root gives the value of M . For PBX-9404, with
Ug = 3.71 km/s and tg . 0.4934 Us , Equation 2.17 yields M = 0.7525

The amplitude behavior is governed by Equation 2.11 and, for this

specific case, the coefficients ic and p become

1C(X) = IAc) + (a€)o (1
2YoUF C 01

2

1X) - +a2 (2.18)
2U F 0 0 01(

Again, for the specific material PBX-9404, Nunztato, et al., using low-

amplitude shock wave experiments, found that (A ) ' -58 GPa and
S 2 C

(a C) = 7.31 X 10 GPa - mm .

Further developments of this theory, along with a general purpose compu-

ter program, have been developed by Sadd (Reference 76), to evaluate the

average wave speed and amplitude behavior. Typical results for the specific

material values for PBX-940J4 are shown in Figures 2.2 and 2.3. Figure 2.2

illustrates the behavior of the average wave speed with propagation distance.

It is evident that the mtcrostructural effects predominate at initial dis-
tances producing a large variation in wave speed. Gradually, as the wave

moves further into the medium, the speed has less variation and approaches a

constant value. The amplitude behavior with propagation distance is shown in
2

Figure 2.3 for the case of an initial amplitude of 2.7 Gm/s . For this

case, the amplitude decays with a superimposed periodic oscillation.

Nunziato, et al., (Reference 61) also presented actual speed and amplitude
experimental data for this material and found fairly good agreement with the

theory.

10
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SINGULAR SURFACE WAVE

Propaga-ting Discon-tinuity:Ep]= *b- p

Wave Amplitude: a [x]

Figure 2.1. Schematic of a propagating singular surface.
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CHAPTER 3

DEVELOPMENT OF WAVE PROPAGATION THEORY

3.1 GENERAL

The major purpose of the research, herein reported was to develop a one-

dimensional wave propagation theory and associated computer code incorporating

the distributed body theory to account for material microstructure. The

developed theory is general in that it can handle a variety of volume distri-

bution functions, and, thus, it can model several types of microstructure. In

addition, the theory has been extended to include the wave motion description

of more than simply one singular surface as discussed previously in

Section 2.3. In this regard, a wave profile constructed of several singular

surface waves has been analyzed. An uncoupled theory in which each wave

propagates independently has been developed. In addition, a coupled theory

incorporating microstructural changes with the passage of each wave in a

profile has also been constructed. The finial step of the theoretical work

was to construct a probabilistic analysis based upon the developed code using

a moment-generating procedure due to Rosenblueth (Reference 73). The probabi-

lIstic analysis allows for the treatment of grain size and local porosity as

random variables. The following sections discuss in detail each of.these

developments.

3.2 VOLUME DISTRIBUTION FUNCTIONS

In order to apply the distributed body theory and develop a wave propaga-

tion analysis, it is necessary to have explicit constitutive forms, see for

example Equation 2.6, and the initial volume distribution v (X) must also be

specified. Any proposed volume distribution function should reflect the

density variations and other microstructural features within the material. It

is difficult to construct such a function which characterizes these variations

precisely and yet has the smoothness requirements to be compatible with the

theory. We will follow the approach that v (X) should be a continuous func-

tion in order to perform certain required differentiations and integrations

and that it yield the correct average density.

As discussed previously In Section 2.3, Nunzlato, et al., (Reference 61)

in constructing a wave propagation analysis, developed a specific volume

distribution function. Their work was for a granular material, PBX-9404, an
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explosive powder/binder system. They proposed a periodic structure of the

form

V(X) = v + (1 - v ) os fw (3.1)o a a 9.

where va and £ are material constants. This function is plotted in

Figure 3.1 versus the distance coordinate.

The quantity va would be given by the overall density of the material

divided by the granule density and is thus related to the average value of the

volume distribution. The second material constant 9 is referred to as a

characteristic length associated with this periodic structure. Clearly I

specifies the length of the repeating units of the microstructure. For

granular materials, £ would be related, but not necessarily equal, to the

average grain size.

In regard to this characteristic length, the work of Shahinpoor (Refer-

ence 77) is appropriate to consider. Shahinpoor did experiments of randomly

packed spherical granules on a flat surface. His work demonstrated the

concept of distinct packing geometries referred to as Voronoi cells, see

Figure 3.2. It is evident that for some packing geometries, if a periodic

structure is assumed, the characteristic length 9 , being equal to the

Voronol cell size, could be several grain diameters.

Since the mechanical response of most geological materials like sand or

gravel is affected by in situ conditions such as overburden, the microstruc-

ture will be nonhomogeneous, i.e., be depth dependent. With this in mind, a

new volume distribution function was developed which can predict such a struc-

ture. One particular form uses an exponential factor and may be written as

v0 (X) = 1 - (1 - v b)e-BYX (3.2)

where v B , and Y are material constants. A plot of this distribution

function is shown in Figure 3.3. Clearly for this case, the material becomes

more dense with depth X into the medium. The constant Vb is the volume

distribution at the free surface X = 0 , Y is the average density of the

material, and the constant B determines the rate of consolidation with

depth. It should be pointed out that this exponential form does not contain

14



any periodic structure; hence, it should produce monotonic results for the

wave propagation characteristics.

Another volume distribution function which was used involves the combina-

tion of the periodic form given by Equation 3.1 and the exponential form from

Equation 3.2. The combined form involves simply the product of these two

relations, i.e.,

Vo(X) = [va + (1 - Va) cos-- 3[l - (1 - Vb) eBYX (3.3)

and again va V b ' 1 , B and y are material constants. It is evident

that this form (shown in Figure 3.4) will thus produce a combined periodic-

exponential depth dependent microstructure.

During the course of this investigation, other forms of the volume

distribution function were developed including algebraic and additive

periodic-exponentIal forms. However, the three forms given by Equations 3.1-

3.3 appear to provide a broad enough microstructure model for the objectives

of this research. Consequently, only these three forms will be included in

the remaining sections of this report.

3.3 WAVE PROPAGATION ANALYSIS

The wave propagation analysis and the development of an associated

computer code was done based upon the previous fundamental work of Goodman and

Cowin (Reference 31) and Nunziato, et al. (Reference 61). The constitutive

form given by Equation 2.6 was also used in this work. Equation 2.6 was used

by Nunziato, et al., but was originally proposed by Goodman and Cowin in 1972.

The constitutive dependence on the gradient of the volume distributon - isax
significant and allows an equilibrium stress to depend on h . Since Equa-vax.
tion 2.6 involves the square of T , it will be an isotropic form in that

variable (required by material frame indifference) and, hence, the stress

response will be independent of the sign of the gradient. Also, the presence
of the gradient term allows the theory to predict a generalized Mohr-Coulomb

failure criterion (Reference 31).

Obviously, the two material functions A and a defined in Equation 2.6

will specify the response of the medium to deformation. Equation 2.6 tndi-

cates that the material function a , specifies the effect of the gradient of

the volume distribution. If a is small, then the stress will not be
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significantly influenced by L . For a stress-free reference state (zeroax
strain state),

A(N0, o ' 0) = 0

a(Vo , V0  0 ) = 0 (3.4)

Considering the stress-strain behavior which could come from Equa-

tion 2.6, Figure 3.5 illustrates some typical curves for various volume

distribution functions. It should be pointed out that the shape of this curve

could vary considerably for various types of geological materials and is a

function of rate of loading. This figure demonstrates the stress-strain

behavior of the granular assembly medium accounting for the particular
av

reference values of v(X) and -- , i.e.,
axv

T = T(X,s) = T(v o , V (L) E) (3.5)

From such typical behavior as shown in Figure 3.5, it is apparent that

the two moduli E and E given by Equation 2.7 would satisfy the relations

, E- O

2
-. aT.

- T it 0 (3.6)

In particular, from the theory, it can be shown that the fast wave speed

given by Equation 2.9, can also be written as

UF =- -Eo/vol o  (3.7)

where Yo is the density of the granules, and E is to be evaluated in the

reference state. Consequently, for real wave speeds E > 0 , and from Equa-

tion 2.7, this means that

E vA + 1 a (3.8)I 2 aC 2 cT) ]> o
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or since 0 < v < 1

+ 1 aV)2
A (L > 0 (3-9)E 2 e 3X 0

where subscripts on A and c mean partial differentiation. Equation 3.9

then gives a condition that the material functions A and a must satisfy

for a given volume distribution.

With regard to the amplitude behavior, it was shown that the amplitude

obeyed the differential equation given by Equation 2.11. By combining Equa-

tions 2.7 with 2.18, it becomes apparent that the coefficient K is related

to E by

4 =(3.10)
2YoUF v

and, hence, the curvature of the stress-strain curve will affect the amplitude

behavior.

In order to further elaborate on the constitutive relationship of this

theory, consider the following special cases:

(1) Uniform Volume Distribution:

For this case, v = v = constant, and so Equation 2.6 yields

T = T(e) = VA v, ) (3.11)

which can be interpreted as a nonlinear elastic/plastic material. Conse-

quently, the material parameter A is associated with constitutive behavior

of the microstructural media based upon the local volume distribution but

neglecting distribution gradients. Wave propagation studies for this case

reduce to the classical one-dimensional plastic wave motion analyses (see

Cristescu, Reference 19).

(2) Homogeneous Elastic Case:

For the reduction to linear elasticity, the volume distribution is taken

to be unity, i.e., v = 1 . Hence, from Equation 3.11

T = A(1, 1, c) (3.12)
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and for the linear elastic case,

AOi, 1, 0) - Ec(3. 13)

where E is the elastic modulus and is identical to the first order modulus

previously defined in Equation 2.7. Wave motion analysis for this case yields

the well known results

a = a0 = constant (3.14)

Based upon this wave motion analysis, a computer code* was developed to

handle any of three volume distribution functions given by Equations 3.1-3.3.

The constitutive form incorporates Equation 2.6, with specific values for the

two material functions A and a to be input by the user. The code uses

general techniques of numerical integration using four-point Gauss quadrature

to calculate the necessary tntegrals for computation of the average wave

speed, see Equations 2.15 and 2.16. In addition, a fourth order Runge-Kutta

scheme is used to solve the nonlinear amplitude Equation 2.11. Thus, the

basic features of the code were to calculate the wave speed and amplitude

(particle acceleration) at various positions and times.

Typical results of the code are shown in Figures 3.6-3.14. The first set

of figures (Figures 3.6-3.8), illustrates results using the periodic volume

distribution function given by Equation 3.1. Recall this distribution func-

tion was shown in Figure 3.1. The specific material parameters for these
42 4

results are va = 0.85 , t = 0.1 in , Yo = 2.4 x 10 lb-sec /in

Q= -450 lb , C - 1 x 10 lb , A = 3 x 10 lb/in 2

A = -1 X 10 lb/in 2 . This material will be referred to as Material P1.

The actual wave speed behavior shown in Figure 3.6 varies periodically, as

given by Equation 2.13. However, the average wave speed will oscillate

initially and then approach a constant value, as shown in Figure 3.7. The

behavior of the amplitude ratio (normalized by ao ) is shown in Figure 3.8

* The computer code is referred to as MIC1D.
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and illustrates the expected effect of the initial amplitude on the attenua-

tion rate; i.e., the higher a. , the larger the attenuation.

Figures 3.9-3.11 show the corresponding results for the exponential

volume distribution specified in Equation 3.2 and shown in Figure 3.3.

Material parameters for this case are v b = 0.65

a 2.4 x 1011 lb-sec2/in , -8 x 10 lb , =c 4.8 x 10 lb
5 2 2

A a 3 x 10 lb/in , A . -1.0 lb/tn , B = 10 in /lb

Y - 7.2 x 10 - 2 lb/in . This material will be referred to as Material El.

The wave speed (shown in Figures 3.9 and 3.10) is now a monotonically

increasing function with depth X since the porosity is decreasing in that

direction. Furthermore, the amplitude behavior shown in Figure 3.11 illus-

trates a much less pronounced attenuation rate when compared with the periodic

volume distribution results in Figure 3.8. The reason for this behavior is

the fact that, for the exponential distribution function, the material

response rapidly approaches with depth that of an elastic material.

Finally, results of using the combined periodic-exponential volume

distribution function given by Equation 3.3 are shown in Figures 3.12-3.14.

Again, this particular distribution function was shown previously in

Figure 3.4. Model parameters for this case are va a 0.992 v b f 0.65

- 0.06 in , Yo = 2.4 x 10 lb-sec /in , Y = 7.2 x 10- 2 lb/in ,
2 5 a S 2

B - 30 in /lb , ci -3 x 10 lb , acc 5 x 10 lb , AC 3 x 10 lb/in 2

2

A = -750 lb/in . This material will be referred to as Material PEI.
Results for wave speed and amplitude attenuation indicate combined features of

each of the two previous distribution functions.

Additional features to calculate particle velocity and displacement,

stress, wave profile behavior, and probabilistic effects were also added to

the basic code. These developments are discussed in the next two sections.

3.4 WAVE PROFILE ANALYSIS

This section describes the efforts to extend the basic theory to predict

wave profile behavior where the wave would have a definite rise time. This

situation requires that consideration be given to a train of waves moving

together. The previous modeling of treating a wave as a singular surface of

zero thickness and duration must be modified. Figure 3.15 illustrates the
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procedure of constructing a profile from a series of impulsive singular waves.

The central complication in this procedure is the fact that wave analyses are

required for the cases of waves traveling behind one another. What this means

is that, with the exception of the leading wave, all waves will be moving into

media which are undergoing non-stationary deformation. If the wave is moving

into a region which is not at rest in its reference configuration, then the

analysis for the wave speed and the amplitude attenuation will be greatly

complicated.

A simple example of this complication may be seen from the wave speed

relations given in Equation 2.9. The velocity of propagation was given by an

equation containing terms

(vT) + (h + (h ) (TVx)C,

C I = (C2 - () -- (3.15)
P0v 0 pk p 0 p k

+ 4+

with T, h and T being moduli evaluated immediately in front of the
C V Vx

given wave and where T, = - , h and T Clearly, the
Di c aV X V X 9V X + 4.

state of the material ahead of the wave as specified by the terms T+ , h +
C VX

T will have a complicating effect on the calculation of the wave speed.v X

Note that the quantity 8 will vanish if the wave is moving into a region

which is stress free. The state of affairs is considerably worse for the case

of the wave amplitude analysis where the coefficients of Equation 2.11 become

quite long and complicated functions of the deformation state in front of the

wave.

It was decided that, in light of the time restrictions of the current

investigation, the analysts of constructing a profile from a group of travel-

Ing waves be made under the simplifying assumption that the propagational

characteristics of each wave depend solely upon the volume distribution at the

wave front. This volume distribution, in turn, depends upon the current

stress state at the wave front. What this means is that waves traveling

behind the leading wave will feel a different material caused by the change of

stress due to all previous waves.
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In order to employ this modeling concept, a method to compute the stress

associated with a singular surface wave must be developed. Recall that the

amplitude of the wave was originally defined as the Jump in the media acceler-

ation, i.e.,

.]"- "+

a - [x] x - x (3.16)

where x and x are the limiting values of the acceleration just ahead of

and behind the singular surface wave. The equation of motion was given by

P"x L + p b (3.17)p x ff ob

where T is the stress and b is the body force which is continuous every-

where. I

Using the basic definition for Equation 3.16, we evaluate the jump of

Equation 3.17 across a typical wave

pix] = 21 + Pc[b]

which, if the body force is continuous, can be written as

VOYOa - &')_ - (21)"

0 0 ax a

and, thus, we can write an expression for the stress gradient behind a given

wave in terms of the gradient in front of the wave as

(T)- - VoYoa + ")+ (3.18)

Next, by using a simple differencing scheme

Tn+1 n aT,- (319)
(AX)n  " X 'Xn (.9-

and so,

T 1  ( T) (AX) + Tn (3.20)
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Finally, combining Equations 3.18 and 3.20 gives

T = T + [ Y a + (-)n ] (T + ) (3.21)n+1 n o on an n

Hence, if we know the stress at one wave Tn , we can compute the new value

Tn+I at the next wave.

As an example to implement this theory, consider the 4-wave profile as

shown in Figure 3.16. The stress values for this case using Equation 3.21

follow to be

T, = To = 0

T2 - T, + [v Y a, + (2'),](AXi) = v Y a,(AX,)
0 01 ax 1  0 0

T, = T, + [voY oa + (4-3)T](AX2)

- T, + [voYoa2 + (3-j(AX')0 0a (axx(X)

0 V0o a1 (AX,) + (a, + a2 )(&X2 )]

T, = T, + EvoYoa, + (L)+](AXT)

- V 0 0oa,(AXI) + (a, + a,)(AX2 ) + (a, + a2 + a,)(AX,)] (3.22)

For the general case with n > 1 , the stress is given by

Tn = Vo Y [a(AX ) + (a, + a2 )(AX 2 ) + (a, + a2 + a3)(AX.)

+...+ (a, + a 2 + a,+ ... + a n1)(AX n1)] (3.23)

Now, since it is expected that tile stress will affect the microstructure,

we postulate that there must be some relationship between the average volume

distribution function - and the stress T , i.e.,

v . v(T) (3.24)
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With little or no stress V - V0  and as the stress increases (compression

positive), one would assume that v * I . Figure 3.17 illustrates such

behavior for a typical sandy soil. Based upon these ideas, the quantity

va in the periodic distribution forms was modified as a function of the stress

by the relation

v a - 1V- ) e - MT (3.25)

where va is its reference value and M is a material constant. This
0

simplified approach is essentially varying porosity with stress to predict

wave coupling effects. This should be regarded as an approximate technique

since Equation 3.25 might not be strictly compatible with the basic constitu-

tive form (Equation 2.6).

Equation 3.25 was then placed into the code to provide an approximate

means to calculate the wave propagational characteristics of waves traveling

behind each other. Of course, an uncoupled theory would be generated by

specifying M + 0 which gives va a Va and, thus, all waves will travel
0

independent of one another. By inputing a number of waves of various initial

amplitudes with equal initial time spacings At0 , a wave profile (accelera-

tion versus time) for various depths can be constructed. With Equation 3.23,

the stress profile can also be constructed. Finally, from the acceleration

profiles, the velocity and displacement profiles were calculated. These

profile constructions are contained within the code. Figures 3.18-3.21 illus-

trate some typical profiles for the periodic volume distribution case using

model parameters of Material P1. These results are for the uncoupled case

M- 0 .

3.5 PROBABILISTIC CONSIDERATIONS

The purpose of a probabilistic analysis is to develop a method by which

the variability or uncertainties in the independent (input) parameters in a

particular problem can be evaluated or estimated in terms of their effects on

the dispersion of the dependent (output) variables. An extremely useful

procedure for determining the moments of a dependent variable in terms of

functions of the moments of its independent variables was developed by Rosen-

blueth (Reference 73). The Rosenblueth procedure is quite versatile and is

not bound by the restrictions often imposed on other moment generating
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procedures, such as the method of partial derivatives. If Y is functionally

related to two random variables X, and X2 , i.e.,

Y - Y (X, , X') (3.26)

and, if X, and X2 are uncorrelated and their probability distribution func-

tions are symmetrical, then, according to the Rosenblueth procedure, the

expected value of Y , E(Y) , and variance of Y , V(Y) , can be estimated

from the following expressions

E(Y) = (1/4) (Y+ + Y - + Y + ) (3.27)

2 2

V(Y) = E(Y )- [E(Y)] (3.28)

where

E2(2) . (1/4) [ ) + (Y+-)2 (Y-+) + (Y-)2] (3.29)

and

Y = Y(X ± OX, P 72 -X) (3.30)

In Equation 3.30, X1  and X2 are che expected values of the random

variables X, and X2 , respectively. Similary, .X, and oX2 are the

standard deviations of the random variables X, and X. . It should be noted

from Equations 3.27-3.30 that the expected value and the variance of Y can

be calculated from four (22) "point estimates" of the function Y , as stipu-

lated by Equation 3.30. Each of these point estimates can be viewed as a

"deterministic calculation" using the dependent random variable Y . The

above system of equations can readily be generalized to n random variables

requiring 2n  point estimates.

A major advantage of the Rosenblueth procedure over the Monte Carlo

method can now be realized when comparing the numi.)er of deterministic calcula-

tions required to determine the moments of the random variable Y . For

example, in the case of three random variables, the Rosenblueth procedure
a

requires 2 - 8 calculations. The Monte Carlo method, on the other hand,

may require several hundred calculations. It should also be pointed out that
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the Rosenblueth procedure is capable of handling correlated input random

variables (Reference 73) and nonsymmetrical probability distribution functions

(Reference 74), if such parameters are known in a problem.

For the purpose of the present investigation, it will be assumed that the

input random variables are uncorrelated and their probability distribution

functions are symmetrical. The assumption is motivated by the fact that the

exact nature of these parameters is seldom known. Therefore, in the subse-

quent analysis, Equations 3.27-3.30 will be used for probabilistic wave propa-

gation analyses.

With E(Y) and V(Y) known, the value of the function at one standard

deviation above (Y+) and below (Y-) its mean value can be determined from the

following relation:

Y E(Y) ± [V(Y)] 2  (3.31)

We can now proceed to apply the Rosenblueth procedure to the wave propa-

gation theory developed in the previous sections in order to account for the

randomness in the parameters L and va . In this connection, we will denote

and _V as the expected values of these variables and a and a as
a ths vaibe ada n a a

their standard deviations. The values of these variables at one standard

deviation above (P) and below (M) their mean values then become

P

P +

a a v a

M - a (3.32)Va f Va- Va

Four deterministic wave propagation calculations are conducted for the
P M P M

four possible combinations of % 9 M V.a and v a as stipulated by

Equation 3.30. The output from these calculations is combined at successive

times (at a selected depth) according to Equations 3.27-3.29 to calculate the

expected value and the variance of each of the dependent variables (accelera-

tion, velocity, stress, etc.). Equation 3.31 can then be used to construct
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the time histories of the expected value and the one-standard-deviation bounds

of these variables. The computer code has been developed to also allow such

probabilistic calculations to be made. To process the results, the program

first calculates an expected value for the arrival time of the wave at any

selected depth using the arrival time data from the four individual determin-

istic calculations. The program then translates (shifts) all the waveforms to

this common arrival time for processing. Figures 3.22-3.24 illustrate some

typical probabilistic results for the acceleration, stress and velocity. Each

figure shows the expected value and the one-standard-deviation bounds for each

wave form.
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Figure 3.1. Periodic volume distribution function (va =0.8

t 0.05 in).
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Some Typical Two-DIAensional Bulk "Voronol Cells"

Cellular Coordination Porosity Void Ratio Cell

Structure Number Numbbr

6 0.0931 0.1027 1

50.1582 0.1879 2

5 0.1582 0.1879 3

4 0.2146 0.2732 4

3 0.3954 0.6540 5

Figure 3.2. Typical two-dimensional Voronoi cells; Reference 77.
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Figure 3.3. Exponential volume distribution function (vb 0.6

B -5 in 2 /lb ,y=7.2 x 10-2 lb/in3 )
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Figure 3.4. Periodic-exponential volume distribution function (V 0.99
22 3v b 0.6 , B = 5 in /lb , y = 7.2 x 10 2 lb/in3  0. 10 in).
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Figure 3.5. Typical stress-strain behavior of granular materials under
uniaxial strain conditions.
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Figure 3.6. Actual wave speed versus distance for periodic volume
distribution.
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Figure 3.7. Average wave speed versus distance for periodic volume
distribution.
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Figure 3.8. Amplitude attenuation versus distance for periodic volume
distribution.
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Figure 3.9. Actual wave speed versus distance f or exponential volume
distribution.
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Figure 3.10. Average wave speed versus distance for exponential volume
distribution.
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Figure 3.11. Amplitude attenuation versus distance for exponential volume
distribution.
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Figure 3.12. Actual wave speed versus distance for combined periodic-
exponential volume distribution.
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Figure 3.13. Average wave speed versus distance for combined periodic-I
exponential volume distribution.
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Figure 3.14. Amplitude attenuation versus distance f or combined periodic-
exponential volume distribution.
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Figure 3.16. Four wave profile example.
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Figure 3.19. Stress profile for a periodic volume distribution I
(Material PI) at X v 0.125 in.
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Figure 3.20. Particle velocity profile for a periodic volume distribution
(Material P1)'at X -0.125 in.
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Figure 3.21. Particle displacement profile for a periodic volume
distribution (Material P1) at X = 0.125 in.
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CHAPTER 14

PARAMETRIC STUDIES

~4. I GENERAL

This chapter will present a variety of typical results from the developed

computer code, MICID. Depending upon which volume distribution function is

used in the modeling, a wide variety of predicted output can result by varying

particular constitutive, microstructural, and input parameters. The constitu-

tive parameters in the wave propagation theory are a , acc, A , and

ACE . The microstructural parameters are v a V Vb ' , B , Y ,

Y , and M . The input parameters are a and At 0 For the purpose of the

parametric calculations, the numerical values of the constitutive parameters

were kept,constant for each of the three volume distribution functions that

were used. The parametric calculations concentrated only on the variation in

the microstructural and input parameters. In principle, however, the consti-

tutive parameters would be a function of the microstructural parameters (see

Equation 2.6). Explicit relationships for these parameters have not yet been

determined. Space limitations in this report preclude presenting many cases:

consequently, only major model parameters will be considered. The chapter is

divided into three major sections dealing with (1) depth dependent behavior,

(2) wave profiles, and (3) probabilistic profiles. Subsections within each of

these sections then present specific effects of parametric variation.

4.2 DEPTH DEPENDENT BEHAVIOR

This section will present the effects of the microstructural and input

parameters on the variation of the average wave speed and amplitude attenua-

tion with depth. These wave propagational characteristics are for the case of

a single wave moving into regions which are at rest in their reference config-

uration.

4.2.1 Periodic Volume Distribution Case

For the periodic distribution model, the microstructural parameters are

the average porosity va and the grain or characteristic length Z . The

basic input parameter is the initial amplitude ao . A typical volume distri-

bution plot for this case is shown in Figure 3.1. Figures 4.1-4.6 illustrate

typical code output for a variety of parametric variations. Figure 4.1
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presents the variation of average wave speed with va . As expected, the

average wave speed decreases with increasing porosity (i.e., decreasing va )

Figure 4.2 shows that the wave speed will increase as t increases. This

result is apparently related to the fact that, with an increase in 9 , the

wave will see fewer microstructural changes per unit length of travel and,

hence, less dispersion. Figure 4.3 illustrates the amplitude behavior for
$

three different initial amplitudes, a = 5 x 103aa 2 0

1 x 10 , and 5 x 10 in/s . Clearly, the expected result can be seen in

that higher initial amplitudes decay faster than the lower amplitude waves.

Figure 4.3, in conjunction with Figures 4.4 and 4.5, portray the effect of

Va on amplitude attenuation. It is observed that the attenuation rate is

strongly dependent on va . As va decreases (i.e., increasing porosity) the

rate of attenuation increases. This result is also consistent with the varia-

tion in wave speed with va shown in Figure 4.1. Finally, Figures 4.6 and

4.4 demonstrate the effect of 9. on amplitude attenuation. These figures

indicate that larger values of 9. result in less attenuation, which is

consistent with the previous observation regarding the variation of wave speed

with L .

4.2.2 Exponential Volume Distribution Case

The exponential volume distribution model contains the microstructural

parameters of the free surface porosity vb and the depth rate of consolida-

tion B . As before, the input parameter is the initial amplitude

a o . Figures 4.7-4.10 show typical results concerning the effects qf these

parameters on the wave propagation variables. Figure 4.7 shows the variation

of the volume distribution function with distance for two different values of

V b Figure 4.8 shows the effect of vb on the average wave speed. For this

case, the wave speed increases with depth due to the overall decrease in

porosity with depth. It is also apparent that an increase in porosity

produces a slower wave speed. Figures 4.9 and 4.10 show the effect of vb

and the initial amplitude on wave attenuation. These results give trends

similar to the previous observations for the periodic distribution function.

That is, higher initial amplitude waves attenuate faster and the attenuation

rate increases with porosity.

4.2.3 Periodic-Exponenttal Volume Distribution Case

For the combined periodic-exponential distribution model, all four micro-
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structural parameters 
va b , and B are present. This, along with

the initial amplitude ao , provides considerable parameter variations. Only

a portion of the possible parametric variations will be presented, and these

are shown in Figures 4.11-4.14. Figure 4.11 illustrates the variation of

volume distribution function with distance for this model for two different

values of vb . This combined function has both oscillatory and monotonic

depth-dependent features. Figure 4.12 shows the effect of Vb on the average

wave speed. Figures 4.13 and 4.14 show the effect of the initial amplitude

and vb on wave attentuation. These results portray the same trends as

observed in the previous sections.

4.3 WAVE PROFILES

Time profiles of the particle acceleration, velocity, and displacement,

along wit the stress at selected depths into the medium, are presented in

this section. The profile construction procedure was discussed earlier in

Section 3.4. Only results from the periodic volume distribution case

(corresponding to model Material P1) will be presented; however, the other

volume distributions will produce similar results. Referring to the wave

coupling aspects discussed in Section 3.4, see Equation 3.25, this section

will present both uncoupled (M = 0) and coupled results (M * 0). The input
_6

acceleration profile used equal time spacing of At0  4 X 10 s for all

cases presented here.

4.3.1 Uncoupled Results

Figures 4.15-4.18 illustrate uncoupled results for the four profiles at

two different depths, X = 0.0 in , X - 2.5 in , and X = 6 in . The input

acceleration wave is shown in Figure 4.15 corresponding to X = 0.0 in . It

should be pointed out that, for this case, all individual waves in a given

profile propagate independently of each other. However, as discussed earlier,

in a given profile higher amplitude waves attenuate faster than the lower

amplitude waves.

4.3.2 Coupled Results

For the coupled case, Equation 3.25 is in effect and the parameter M

plays a significant role in determining the amount of coupling. The wave

profile results for the coupled case are shown in Figures 4.19-4.22 for a
2

value of M - 0.04 in /lb and with va - 0.85 . C,)upling effects through
a
0
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variation of va (see Equation 3.25) for the periodic distribution case will

produce less attenuation than the corresponding uncoupled results. This

occurs since increases in v a produce a material with less average porosity

and, hence, dispersive effects will be reduced.

4.4 PROBABILISTIC PROFILES

This final section shows results of some typical probabilistic computer

runs. The theoretical development was discussed previously in Section 3.5.

The probabilistic results consisting of the expected value and the one-

standard-deviation bounds of particle motion and stress are shown in

Figures 4.23-4.26 for the case of zero coupling. These results correspond to

model Material PEl (the combined periodic-exponential volume distribution

case). Only the parameter j was considered to be random for these

calculations. Therefore, the dispersion in the output quantities is only due

to uncertainties in I.
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Figure 4.1. The effect of va on the average wave speed versus depth f or
a periodic vol~ume distribution (Material PI with
t - 0. 1 in).
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Figure 4.2. The effect of t on the average wave speed versus depth
for a periodic volume distribution (Material P1 with
V a = 0.8).
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Figure 4.3. Amplitude ratio versus depth for a periodic volume
distribution (Material P1 with t 0.1 in and va = 0.7).
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69



X 0. 0 in

1 .40

1 .20

1.00

0.80

J 0

0.40
X =2. 5 in

X -6. 0 in
0.20

0.00
0. 50. 1 00. 1 50. 200. 250.

Tim =0 EO

Figure 4.16. Uncoupled particle velocity profiles at various depths
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CHAPTER 5

SUMMARY AND RECOMMENDATIONS

5.1 SUMMARY

A one-dimensional computer programr(referred to as MICID) has been

developed for analyses of explosive wave propagation in granular materials

with mtcrostruoture. The theoretical foundation of the computer program is

based on the distributed body concept advanced by Goodman and Cowin

(Reference 31) and the associated wave propagation studies conducted by

Nunziato, Walsh, et al. (References 57-63). The computer program allows for

(1) arbitrary surface airblast loading, (2) depth-dependent volume distribu-

tion function simulating gravity effects in a granular mass, and (3) treatment

of grain size and local porosity as random variables. Three forms of depth-

dependent volume distribution functions are incorporated in the program, i.e.,

a periodic form, an exponential form, and a combined periodic-exponential

formulation. The user can select any of these forms for the particular

application at hand. Probabilistic treatment of grain size and local porosity

is accomplished by using a moment-generating procedure due to Rosenblueth

(Reference 73). The computer program calculates the expected value and the

variance of the output quantities, such as stress, particle motion, etc., due

to the randomness in these variables.

Application of the computer program is demonstrated by presenting the

results of a series of parametric calculations dealing with propagation of

acceleration waves in granular media. It is shown that, within the range of

variables studied, local porosity and grain size characteristics (which are

reflected in the microstructural parameters Va I Vb , B , I , . o , Y)

play an important role in wave attenuation in such materials. The effect of

grain size parameter t on wave attenuation during short propagation

distances (less than a hundred grains) is interesting and requires experimen-

tal verification.

5.2 RECOMMENDATIONS

Several recommendations are made for further development in the analyti-

cal aspects and for the experimental validation of the present work. First,

the wave propagation model should be validated with an experimental setup that

captures the dynamic load transfer and wave motion across several grain
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boundaries. This can be accomplished via dynamic photoelasticity as described

by Rossmanith and Shukla (Reference 75). For example, the dynamic photoelas-

tic laboratory at the University of Rhode Island can take data at a rate of

106 frames/see. It is possible to measure wave speed and amplitude attenua-

tion as the dynamic loads are transferred across a finite number of particles.

Second, the coupling effects for constructing wave proftles from a group of

traveling waves should be examined further. In the present formulation, the

coupling effects due to spatial redistribution of local porosity as the waves

propagate through the medium were neglected. The consequence of this

assumption needs to be examined. Third, in the present study the constitutive

moduli were taken to be constant, but, in actuality, they depend on the basic

microstructural parameters. Attempts should be made to relate these moduli to

some basic microstructural variables of the granular medium. Studies in

fabric tensor models proposed by Oda, Nemat-Nasser, et al., (Reference 67) may

provide some direction for developing the desired relationships. Fourth, the

probabilistic analysis in this study was only relevant to the periodic aspects

of the volume distribution model since only

Va and I were treated as random variables. The present probabilistic

analysis should be extended to treat v b in the exponential distribution

model also as a random variable. Finally, the wave propagation model should

be extended to two-dimensional geometry. The variation in local porosity in

two dimensions can then be incorporated in such a formulation without recourse

to a probabilistic analysts.
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APPENDIX A

WAVE PROPAGATION
COMPUTER CODE

GLOSSARY OF MAJOR VARIABLE NAMES

NAME DEFINITION

A(N,J) Acceleration array for N depths and J waves

Al(NJ) Acceleration array for probabilistic calculations

A2(NJ) Acceleration array for probabilistic calculations

A3(N,J) Acceleration array for probabilistic calculations

A4(NJ) Acceleration array for probabilistic calculations

AB(2J) Amplitude array for acceleration plotting

AFF a, material constant

AFFF , material parameter

AM(2J) Acceleration profile minus one-standard-deviation

AP(2Jj Acceleration profile plus one-standard-deviation

APLOT(2J,.) Acceleration array for probabilistic plotting

AR(N,J) Normalized amplitude array

BB B, power of exponential volume distribution' function

Cl(NJ) P coefficient in amplitude equation

C2(N,J) K coefficient in amplitude equation

C3(N,J) Array for volume distribution function

DD(J,.) Particle displacement array for probabilistic
plotting

DELTR Initial time increment between input acceleration
waves

DELX(N,J) Distance between two consecutive waves.

DISP(NJ) Array for particle displacement

DM(J) Particle displacement profile minus one-standard-
deviation
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DP(J) Particle displacement profile plus one-standard-
deviation

DPLOT(J) Displacement array for plotting

Dl(N,J) Displacement array for probabilistic calculations

D2(NJ) Displacement array for probabilistic calculations

D3(N,J) Displacement array for probabilistic calculations

D4(N,J) Displacement array for probabilistic calculations

EA(2J) Expected acceleration profile array

ED(J) Expected particle displacement profile array

ENUAA (va)o value of va in the reference state

ENUB vb material function for exponential volume distri-
bution function

ES(J) Expected stress profile array

EV(J) Expected particle velocity profile array

EX M, material constant in equation (3.25)

FLFF A , material constant

FLFFF A material constant

GG Y, specific weight of the material used in equation
(3.2)

GL 9, characteristic length for periodic distribution
form (3.1)

GO Yo, weight density of the material

H 1/40, interval measure for numerical integration

S Looping index for number of input waves

L Maximum limit of the looping parameter N for propa-
gation depth

M Looping index for probabilistic calculations

N Looping index for depth incrementing

NR Maximum number of runs for probabilistic
- calculations. (NR=l yields deterministic case)
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NV Vilue of looping parameter at a desired depth

NW Number of initial input wave amplitudes used to
construct a profile

PSTRES(J) Array used for plotting of stress profile

SIGNUA ova , the standard deviation for volume distribution
parameter va

SGL o, the standard deviation for characteristic length,

I

SM(J) Stress profile minus one-standard-deviation

SP(J) Stress profile plus one-standard-deviation

SPLOT(J,.) Stress array for probabilistic plotting

STRES(NJ) Wave front stress array

Sl(N,J) Stress array for probabilistic calculations

S2(N,J) Stress array for probabilistic calculations

S3(N,J) Stress array for probabilistic calculations

S4(N,J) Stress array for probabilistic calculations

TAVG(J) Average time for probabilistic run

T(N,J) Time of propagation

TSUM(N,J) Arrival time increment

TP(J) Time array used for profile plotting

TPLOT(J) Time array used for profile plotting

TI(N,J) Time array for probabilistic calculations

T2(N,J) Time array for probabilistic calculations

T3(N,J) Time array for probabilistic calculations

T4(N,J) Time array for probabilistic calculations

UBAR Average wave speed as calculated in subroutine
Gauss

UF(N) Fast wave speed

UGRN Initial wave speed on the free surface of the medium
at X-O. Also equal to granule wave speed.
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U(N,J) Average wave speed

UREAL(NJ) Actual wave speed

V(N,J) Particle velocity

VM(J) Particle velocity profile minus one-standard-
deviation

VP(J) Particle velocity profile plus one-standard-
deviation

VPART(J) Particle velocity for profile plotting

VV(J,.) Particle velocity array for probabilistic plotting

VI(N,J) Particle velocity array for probabilistic calcula-
tions

V2(N,J) Particle velocity array for probabilistic calcula-
tions

V3(N,J) Particle velocity array for probabilistic calcula-
tions

V4(N,J) Particle velocity array for probabilistic calcula-
tions

X(N) Depth into the media

YAM(J) Initial input amplitudes
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MICID

WAVE PROPAGATION CODE
FLOW CHART

Choose v-Function From Menu

1. Periodic

2. Exponential

3. Periodic-Exponential

Read Data From File

AFF ,AFFF, BB, DELTR ,ENUAA ,ENUB

[EXPFLFFFLFFF,GG,GL,GO,L,NR,SIGNUA,SGL

Input Number of Wave

Amplitudes NW and Their Magnitudes

4
Choose Type of Solution

1. Deterministic, NH-i

2. Probabilistic, NR=L4

Probabil istic

Loop Starts

M a l.NR
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Input Wave

Loop Starts

J - 1, NW

Depth Increment

Loop Starts

N 1,L

Yes

Calculate

Distance Between Waves, DELX(N,J)

Stress, STRES(N,J)

Time Array, T(N,J)

Call Subroutine GAUSS

__________ Calculate Average Wave

Speed, UCN,J)
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Call Subroutine RUNKUT to Calculate

Particle Acceleration, A(N,J)

1p-Coefficient, Cl(NJ)

i-Coefficient, C2(N,J)

Volume Distribution, C3(N,J)

Actual Wave Speed, UREAL(N,J)

and Displacement, D(NJ)

Yes

Calculate Probabilistic Profiles

of Expected Value and One-Standard-

Deviation Bounds

Call Graphics for Output
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EXAMPLE RUN

As an example of the use (n' the program MICID, a typical run

will now be presented. The first prompt from the program which

will appear on the CRT screen will be a menu for the type of

volume distribution to be used, i.e.

I CHOOSE THE TYPE OF VOLUME DISTRIBUTIO
I FUNCTION TO BE USED IN THE ANALYSIS FOR I
I THE GRANULAR MEDIUM IN CONSIDERATION I

ENTER THE PROPER SELECTION NUMBER PLEASE

'1 1. PERIODIC VOLUME DISTRIBUTON FUNCTIONI I
I 2. EXPONENTIAL VOLUME DISTRIBUTION FUNCTIONI I
I 3. PERIODIC-EXPONENTIAL COMBINED FUNCTION I

The user should respond with the appropriate choice.

The name of the input data file is requested next through

the prompt

eNTER NAME OF THE DATA FILE. (NAME.DAT)
PEDAT.

The program requires the input data AFF, AFFF, BB, DELTR, ENUAA,

ENUB, EX, FLFF, FLFFF, GG, GL, GO, L, NR, SIGNUA, SGL (see

glossary for description of each of these quantities). The data

is read in an unformated fashion, and a typical data file would

look like

-3.E5.5.E .30.O,4.E-6,0.gg6,0.7,0.O,3.E5,-750.O,7.2E-2,0.1,
2.4E-4,1000,1,0.0,0.03
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Depending upon which volume distribution that is selected and

whether the run is deterministic or not, some of the input data

will not actually be used.

Next the number of initial wave amplitudes are requested by

INPUT NUMBER OF INITIAL WAVE AMPLITUDES TO BE USED

Finally the code requests the values of each of the initial

input waves

ENTER INITIAL VALUES OF THE WAVE AMPLITUDES

The input is now complete and the code will print out all of

this data so that the user can check to see if the input has been

done correctly. A typical output of this step is shown below for

the case of the previous data file and with three initial

amplitudes

INPUT DATA

AFF = -300000.0
AFEF = 5.OOOOOOOE+08
BB = 30.00000
DELTR = 4.OOOOOOOE-06
ENUAA = 0.9960000
ENUB = 0.7000000

w. EX = O.OOOOOOOE+O0
FLEE = 300000.0
FLFFF = -750.0000
GG = 7.1999997E-02
GI. = 0.1000000
GO = 2.3999999E-04
L = 1000

AMPLITUDE( 1) = 0.10000E+04
AMPLITUDE( 2) = 0.50000E+04
AMPLITUDE( 3) = 0.10000E+05

PRESS RETURN TO CONTINUE...
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Once the "return key" has been depressed, the program will

start its computation and the following will typically be seen on

the screen

PROGRAM IS NOW RUNNING

COMPUTATION OF DELTA X BETWEEN WAVES ENDS
J- 2
N= 944
T(N,3)= 7.3260060E-05
MAXIMUM LIMIT = 7.3219306E-05

COMPUTATION OF DELTA X BETWEEN WAVES ENDS
3= 3
N= 8SS

T(N,J)= 7.3226467E-05
MAXIMUM LIMIT = 7.3219308E-05

The message concerning the computation of DELTA X is related to

the theory in section 3.4 dealing with the stress calculations.

This computation will stop before the completion of the entire

N-loop, and this comment lets the user know when this occurs.

The above example is for the case of three initial wave

amplitudes with L-1O00.

When the code is finished with its calculations, the user is

prompted with the following menu for output results

CHOOSE THE TYPE OF GRAPHICS OPTION

1. DETERMINISTIC PROFILE PLOT

2. PROBABILISTIC PROFILE PLOT

3. DEPTH DEPENDENT PLOT
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Selecting for example item #3, depth dependent plots, the

final plotting menu will appear.

BNTER ITEM NUMBER FOR DEPTH DEPENDENT PLOT

1. ACTUAL WAVE SPEED

2. AVERAGE WAVE SPEED

3. AMPLITUDE BEHAVIOR WITH DEPTH

4. VOLUME DISTRIBUTION FUNCTION

5. MU-COEFFICIENT

6. KAPPA-COEFFICIENT

7. NO GRAPHICS i.e. DATA OUTPUT IN A FILE

Specifics on the final stages of plotting will not be given

since these will be system and software dependent and thus will

vary from system to system. An example output corresponding to

the example input data shown previously, is given in Figure A.l.
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VOILUME DISTRIBUTION FUNCTION

1 .00

0.90

0.85

0.80

0.75

0 0.70

0.65

0.60

0.55

0.00 0.50 1 .00 1 .50 2.00 2.50

Depth (in)

Figure A-i. Plotted output for example run (continued).
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AVERAGE WAVE SPEED

40.

35.

30.

25.

20.

15.

10.

5.

0.00 0.50 1 .00 1 .50 2.00 2.50

PizopGe5OLUOU DePth (in)

Figure A-i. Plotted output for example run (continued).



AMPILITUDE B EHAVI OR WITH DEPTH

1 .0

0.9

0.8N^_

0.7

0.6

v 0.5

0.4

0.3

0.2

0.1

0.00 0.50 1 .00 1 .50 2.00 2.50
ProlpamAt1. Deptht (in)

Figure A-i. Plotted output f or example run (concluded).
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C
C PROGRAM M IC 1D
C
C ONE DIMENSIONAL WAVE PROPAGATION CODE FOR MICROSTRUCTURAL
C
C MATERIALS MODELLED DY GOODMAN-COWIN DISTRIBUTED BODY
C
C THEORY. CODE EMPLOYS SINGULAR SURFACE WAVE THEORY
C
C ORIGINALLY DEVELOPED BY NUNZIATO ot &..
C
C WRITTEN BY*
C
C PROFESSOR MARTIN H. SADD*
C
C AND
C
C MOHAMMAD N. HOSSAIN
C*
C DEPARTMENT OF MECHANICAL
C ****** ENGINEERING & APPLIED MECHANICS
C **.*.* UNIVERSITY OF RHODE ISLAND
C ***.**KINGSTON, RI 02691
C SEPTEMBER, 1996
C
C WRITTEN FOR
C
C DR. BEHZAD ROHANI
C
C U. S. ARMY ENGINEER *
C
C WATERWAYS EXPERIMENT STA4TION
C VICKSBURG, MS 39190
C

C
C DIMENSION SIZES ARE RELATED TO DEPTH COUNTER "N" (1CN<L) AND
C NUMBER OF WAVES COUNTER "J" (1<J<NW); MAXIMUM L-3000 AND
C MAXIMUM J-15
C

DIMENSION A(300015),A1(3000,15),A2(3000.15).A3(3000,15).A4
* (3000, 15),AB(30),AM(30),AP(30),APLOT(30,3),AR(3000. 15),Cl(3000.
* 15),C2(3000.15.C3(300015),01(3000.15).D2(3000.15),D3(3000.15).
* D4(3000,15),DELX(3000..15),DD(15,3),DISP(3000,15),DPLOT(15)I
* DP( 15), DM( 15). EA(30). ED( 15). ES( 15). EV( 15). NMAX( 15).
* PSTRES(15),STRES(3000, l5),Sl(3000. 15),S2(3000, 15).53(3000. 15),
* 54(3000, 15),SM(15),SP(15),SPLOT(15,3).T(3000. 15),
# TAVG(15),TI(3000,15),T2(3000,15),T3(3000,15),T4(3000,15),TSUM
* (3000. 15),TP(15),TPLOT(30).VI(3000. 15).V2(3000. 15).V3(3000. 15).
* V4(3000,15),V(3000.15),VP(20).VPART(15),VM(15).VV(15,3).UREAL
# (3000, 15),U(3000, 15). X(3000),YAM(15)
CHARACTER ANS*9. DATNAME*8, DATA*9. TITLE*50, XLABEL*50, YLABEL*50,

* LINLABEL( 10)*25, LINE*25, PANS*5
INTEGER JJ, KK, ANS
REAL ALO,AHI, AMP, H, U.UL, UH, X, Y.YAM, YO
COMMON /GRAIN/ AFFO, AFFF. BB,.DUM. ENUD. FLFFO, FLFFFD GG, GL. GO.TIME
COMMON /CONTRL/ PPI.QG01

P 1.0
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o 1. 0
al 0. 0
WRITE(&. 2)

2 FORMAT('l'///)

PRINT*,",I CHOOSE THE TYPE OF VOLUME DISTRIBUTION to
PRINT*,"', FUNCTION TO BE USED IN THE ANALYSIS FOR 1,
PRINT.. 'I THE GRANULAR MEDIUM IN CONSIDERATION 11
PRINT.,---------------------------------------------------
PRINT.' ,

IPRINT*, ' ENTER THE PROPER SELECTION NUMBER PLEASE'
PRINT,'
PRINT* --------------------------------------

PRINT*. ': 1. PERIODIC VOLUME DISTRIDUTON FUNCTION V1
PRINT*. '!I
PRINT* '1 2. EXPONENTIAL VOLUME DISTRIBUTION FUNCTION 2
PRINT..
PRINT..' 1 3. PERIODIC-EXPONENTIAL COMBINED FUNCTION 1
PRINT*.------------------------------------------ ---------
PRINT.'
READ(5.5) KK

5 FORMAT(12)
IF((KK.NE. 1).AND. (KK.NE.2).AND. (KK.NE.3)) GO TO 1
IF(KK.EQ.1) THEN

a 0.0
a1l 1.0

END IF
IF(KK. EQk.2) THEN

P 0.0
Pt 1.0

a END IF
C
C READ INPUT DATA FROM THE EXISTING DATA FILE
C

WRITE(6..)'ENTER NAME OF THE DATA FILE. (NAME.DAT)'
READ(5. 10) DATNAME

10 FORMAT(1A8)
OPEN(UNIT-2. FILE-DATNAM4E, STATUS- 'OLD')
READ(2..) AFF. AFFF,B99.DELTR, ENUAA. ENUD. EX. FLFF. FLFFF. GG. CL. 00.L,

# NR. SENUA. SGL
15 CLOSE(UNIT-2)

C
C AMPLITUDE INPUT SECTION. ENTER THE (NW) INITIAL WAVE AMPLITUDES.
C FINAL WAVE (J-NW) IS USED ONLY AS AN END MARKER AND WILL NOT
C BE PLOTTED IN PROFILE RESULTS.
C

PRINT*.'
PRINT.'INPUT NUMBER OF INITIAL WAVE AMPLITUDES TO BE USED'
READ(5..) NW
PRINT,'I
PRINT*, 'ENTER INITIAL VALUES OF THE WAVE AMPLITUDES'
READ(5.*) 4YAM(J),J-1,NW)
PRINT*,' '
PRINT*.' INPUT DATA'
PRINT*,'
WRITE(6.*) 'AFF -'.AFF

WRITE(6,*) 'AFFF -'.AFFF
WRITE(6,*) '3D - '9BB
WRITE(6.*) 'DELTR -'.DELTR
WRITE(6,*) 'ENUAA - ',ENUAA
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WRlTE(6,*) 'ENUD - '.ENUB
WRITE(6.*) 'EX -',EX
WRITE(6,*) 'FLFF -'.FLFF
WRITE(68*) 'FLFFF -'.FLFFF
WRITE(6.*) 'GG - ',GG
WRITE(6p*) 'GL - ',GL
WRITE(6,*) 'GO - 'sGO
WRITE(6.*) 'L - L
PRINT*, '
DO 1-1,NW
WRITE(6,800) 1,YAM(I)
END DO
PRINT*. '
PRINT*. 'PRESS RETURN TO CONTINUE...
READ(5. *)
PRINT*,'
PRINT*, 'PROGRAM IS NOW RUNNING'
AFFO-AFF/GO
FLFFO-FLFF/GO
UGRN - SQRT(FLFFO)
TAVG(1)=O. 0
H-GL/40. 0

C
C PROBABILISTIC LOOP STARTS
C

IF (NR.EG.1) GO TO 17
PRINT*,'
PRINT*, 'PROBABILISTIC RUN WITH DATA'
PRINT*.'
WRITE(6,*) 'ENUAA - ',ENUAA
WRITE(6,*) 'EX -',EX
WRITE(6,*) 'NR -DNR
WRITE(6,*) 'BIGNUA - ',SENUA
WAITE(6,*) 'SGL '1,SGL
PRINT*,'
PRINT*, 'PRESS RETURN TO CONTINUE...'
READ(5. *)
ENUAP-ENUAA.SENUA
ENUAM-ENUAA-SENUA
GLP - GL + SQL
GLM - GL - SGL

17 DO 71 M-1,NR
IF (NR.EQ.1) GO TO 19
IF (M.EQ.1) THEN

ENUAA-ENUAP
GL - GLP

END IF
IF (M.EG.2) THEN

ENUAA-ENUAP
GL - GUI

END IF
IF (M.EQ.3) THEN
ENUAA - ENUAM
GL- GLP

END IF
IF (ME.4) THEN

ENUAA u ENUAM

GL - GLMI
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NMAX (1)-L
DO 70 J - 1.NW
DUII-0. 0
YO-YAM (J)
DO 65 N - 1.L
X(N)-N.GL/40.
Y-X(N)

C
C PERFORM NUMERICAL INTEGRATION FOR THE TRANSIT TIME
C AND CALCULATE THE AVERAGE WdAVE SPEED
C

XL-INT( (N-1)/20. )*GL/2. 0
NN-INT((L-20. )/20.)
DO 20 11.,NN
LL-2O. *1+
IF (N. EQ. LL) GOTO 30

20 CONTINUE
GOTO 40

30 DUN-T IME
40 IF (NEQ~) TSUM(1.J) - H/UGRN

IF (NOGT. 1) TSUPI(NDJ) - TSUM(N-1,J)+H/(U(N-1,J)*1000.)
T(N.J) - (J-1)*DELTR+TSUM(N.J)
IF'(J.EQ.I) GO TO 50
IF (T(NJ).GT.T(L-I. I)) THEN
PRINT*.' I
PRINT*. 'CAN NO LONGER COMPUTE DELTA X BETWEEN WAVES'
PRINT*, 1%)-1. J
PRINT*. 'N-'.N
PRINT*. 'T(N.J)-'.T(N.J)
PRINT. MAXIMUM LIMIT - '.T(L-I. I)
GO TO 70

END IF
DO NC-N. N+200

NT-NC
IF (T(N.J).LE.T(NC.J-I)) GO TO 45

END DO
PRINT*. 'M=',M
PRINT*, 'N'.,N
PRINT*. 'J-'.J
PRINT*, 'ERROR IN THE AMPLITUDE TIME-TEST'
GO TO 630

45 DELX(N,J-1)=(NT-I)*H+(T(N,J)-T(NT-IJ-I))*(H/(T(NT.J-I)
*-T(NT-I, J-1)) )-N*H

NMAX(J) - NT
MAXN-NMAX (J)
ASUM=O. 0
DO JK-1,J-1

ASUI1-ASUM+A (N. JK)
END DO
SIGMA-C3(N,1I)*GO*ASUII*DELX(N. J-1)
STRES(N, J)-SIGMA.STRES(N. J.-1)
ENUA - I. - (I. -ENUAA)*EXP(-EX*STRES(NJ))

50 CALL GAUSS (ENUAJ.IKR,NXL.Y#UBAR)
U(N, J)-UBAR/1000.

C
C SOLUTION OF THE WAVE AMPLITUDE BY FOURTH ORDER RUNGE-KUTTA METHOD
C

CALL RUNKUT(AMP. ENUA H. J.N. PKAPA. PMU, VDFUN, RWSPD, Y. O)
A (N. J) -AMP
AR(N.J) -A(N,J)/YAM(,J)
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C I(NJ) - PMU
C2(N,J) - PIKAPA
C3(N.J) - YDFUN
UREAL(N,J) - RWSPD
ASUM-ASUM+A(N. J)
IF (JEGl) THEN
STRES(N. J)=O. 0
V(N.J)=O. 0
DISP(N. J)-0. 0
00 TO 55

END IF

DISP(N,J)-.5*(y(N,J)+V(N,J-1))*(T(N,J)-T(NJ-1))+DISP(N*J-1)
55 IF (NR.EQ.1) GO TO 65

IF (MEG 1) THEN
Al(NJ) - A(N,J)
Tl(N,J) - T(NJ)
SI (N J)-STRES(N, J)
VI (N, J)inV(N, J)
DI (N, )DZSP(N, J)

END IF
IF (M.EQ.2) THEN
A2(NJ) - A(N.J)
T2(N.J) - T(N,J)
S2(N, J)=STRES(N. J)

D2(N, J)-DISP(N, J)
END IF
IF (M.EG.3) THEN
A3(NJ) - A(N,J)
Trl!N,J) -T(N,J)
S3(N, J)-STRES(N.J)
V3(N, J)-V(N, J)
D3(N, J)-DISP(N, J)

END IF
IF (M.EQ.4) THEN

A4(N,J) - A(N,J)
T4(N,J) - T(N.J)
S4(N, J)-STRES(N. J)
V4(N, J)inV(N. J)
D4(N. J)-DISP(N. J)

END IF
65 CONTINUE
70 CONTINUE
71 CONTINUE
72 PRINT*,'

C
C START OF FRIENDLY INTERACTIVE OPTIONS
C

PRINT*, 'CHOOSE THE TYPE OF GRAPHICS OPTION'
PRINT*,
PRINT*, 'I. DETERMINISTIC PROFILE PLOT'
PRINT*, '
PRINT*, '2. PROBABILISTIC PROFILE PLOT'
PRINT*, ' ' I -

PRINT*, '3. DEPTH DEPENDENT PLOT'
PRINT*, '
READ(5,*) TANS
IF ( IAN9.EQ.l ) GO TO 75
IF ( IANS.EG.2 ) GO TO 135
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IF (IANS.EO.3 ) 0O TO 80
IF ((IANS.NE.1 ).AND.(IANS.NE.2).AND.(IANS.NE.3)) 00 TO072

75 PRINT 760
PRINT 600, MAXN
READ(5. 650) NV
XCURNT=NV*QL/40
PRINT 680, XCURNT

C
C TIME PROFILE PLOTTING OPTIONS
C

PRINT*,'
PRINT*. 'ENTER OPTION NUMBER FOR DETERMINISTIC PROFILE PLOT'
PRINT*.'
PRXNT*. '1. PARTICLE-DISPLACEMENT PROFILE'
PRINT*,
PRINT*. '2. PARTICLE-VELOCITY PROFILE'
PRINT*,'
PRINT*, '3. PARTICLE-ACCELERATION PROFILE'
PRINT*,.
PRINT*, '4. STRESS PROFILE'
PRINT*.II
READ(5, 560) J.F
GO TO (112. 115. 120, 125) JF

C
C DEPTH-DEPENDENT PLO-TING OPTIONS
C

80 PRINT*, 'ENTER ITEM NUMBER FOR DEPTH DEPENDENT PLOT'
PRINT*,' I
PRINT.. '1. ACTUAL WAVE SPEED'
PRINT*,I
PRINT*, ~ AVERAGE WAVE SPEED'
PRINT*,
PRINT*, '3. AMPLITUDE BEHAVIOR WITH DEPTH'
PRINT*,
PRINT*, '4. VOLUME DISTRIBUTION FUNCTION'
PRINT*,
PRINT*, '5. MU-COEFFICIENT'
PRINT*, '
PRINT*, '6. KAPPA-COEFFICIENT'
PRINT*,II
PRINT*, '7. NO GRAPHICS i. e. DATA OUTPUT IN A FILE'
READ(5. 580) JJ
GO TO (100.,105.,110.,130.,140.,150,200) JJ

C
C CALL GRAPHICS SUBROUTINES TO DRAW THE COMPUTED OUTPUT
C
C PLOT THE ACTUAL WAVE SPEED
C

100 UMIN-200.
UMAX. 0
DO J- 1. NW

DO I11L
IF (UREAL(I.J). LE. UMIN) UMIN=UREAL(IJ)
IF (UREAL(I.J).GE.UMAX) UMAX-UREAL(I,J)

END DO
END DO
WRITE(6, 900) UMIN. UMAX
PRINT.. 'ENTER LOWER & UPPER ORDINATES OF WAVE SPEED'
READ(5..) VL.VH

TITLE-'$ACTUAL WAVE SPEED$'
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XLABEL-'$Prapagation Dopth(in)S'
YLADEL'S$Wave Speed (kin/s)$'

CALL WAVGRAFCX, 0.0,X(L). UREAL. VLVH.L, 1,3000.19, LINLABEL,
*XLADELD YLABEL. TITLE,.TRUE. ,.TRUE. )
GO TO 500

C
C PLOT THE AVERAGE WAVE SPEED
C
105 UMAX=0. 0

DO J=1,NW
LINLABEL(J)='
DO 1=1,L

IF (U(I,J). GE. UMAX) UMAX-U(IJ)
END DO

END DO
WRXTE(6, 1000) UMAX
VL-0. 0
PRINT*. 'ENTER UPPER ORDINATE OF AVERAGE WAVE SPEED'
READ(5,*) VH
J-1
DO WHILE ( J NE. 0

PRINT*, 'ENTER THE LINE * TO BE LABELED'
PRINT*D '(TYPE 0 IF NO LABELS NEEDED )'
READ(5,*) J
IF ( J -NE. 0 ) THEN
PRINT 640, J.
READ(5, 570) LINE
LINLABEL(J)=LINE

END IF
END DO
TITLE=-$AVERAGE WAVE SPEED$'
XLABEL='SPropagation Depth (in)*'
YLABEL='SWave Speed (kln/s)$'
CALL WAVGRAF(X,0. 0.X(L).UVL.VH.L. 1,3000, 15.LINLADEL,

*XLABEL. YLABEL, TITLE,.TRUE. ,. TRUIE. )
GO TO 500

C
C PLOT THE AMPLITUDE BEHAVIOR WITH DEPTH
C

110 TITLE='SAMPLITUDE BEHAVIOR WITH DEPTH$'
XLABEL-'$Prapagation Depth (in)$,
YLABEL='SAmplitude Ratio$'
DO J=1,NW

LINLABEL(J)-'
END DO
J- 1
DO WHILE ( J NE. 0

PRINT*, 'ENTER THE LINE # TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )'
READ(5,*) J
IF ( J NE. 0 ) THEN
PRINT 640, .J
READ(5, 570) LINE
LINLABEL(J)-LINE

END IF
END DO
CALL WAVGRAF(X,.O,XCL).AR,0..1.,L,NW,3000,15,LINLADEL,

*XLABEL. VLADEL, TITLE, .TR'JE.,. TRUE.)
GO TO 500

C
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C PLOT PARTICLE DISPLACEMENT TIME PROFILE
C
112 IF (NU-EQI) GO TO 117

DO I = 1,NW
LINLABEL(l)-'

END DO
~Jm1

DO WHILE ( 1J .NE. 0
PRINT*. 'ENTER THE LINE * TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )'
READ(5.ii) J
IF J ,.INE. 0 )THEN
PRINT 640, J
READ(5, 570) LINE
LINLABEL(4)=LINE

END IF
END DO

TITLE= '$PARTICLE DISPLACEMENT PROFILE$'
XLABEL='$Time (secXl. E6)$'
YLABEL='$Displacoment (inXl. E6)$'
DPLOT( I)=0. 0
TP(1)=T(NV,1)*1. E6
DO I=2,NW

TP(I) = T(NV,I)*1.E6
DPLOT(I)=DISP(NV. I)*1. E6

END DO
DISPMAX-0. 0
DO I=1,NW

IF (DPLOT(I). GE. DISPMAX) DISPMAX=DPLOT(I)
END DO
WRITE(6, 1050) DISPMAX
PRINT*, 'ENTER MAX. ORDINATE OF DISPLACEMENT'
READ(5,*) DHI
DLO = 0. 0
TMIN=0. 0
TMAX=T(NV,NW)*l. E06

CALL WAVGRAF(TP. TMIN, TMAX, DPLOT. DLO, OHI, NW. 1.15. 1.LINLABEL,
*XLABEL. YLABEL, TIT'LE, .TRUE.,.TRUE.)
GO TO 500

C
C PLOT PARTICLE-VELOCITY TIME PROFILE
C
115 IF (NW.EQ.1) GO TO 117

DO 1=1,NW
LINLABEL(I)='

END DO
J-1
DO WHILE ( J .NE. 0)

PRINT*, 'ENTER THE LINE # TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )

READ(5,*) ,J
IF ( J NE. 0 ) THEN
PRINT 640, 1
READ(5. 570) LINE
LINLABEL(.J)=LINE

END IF
END DO
TITLE= '$PARTICLE VELOCITY PROFILE$'
XLABEL='STime (see Xl. E6)$'
YLABEL='*Velocity (in/s)$'
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VPART(lI)=0. 0
TP(1)=T(NV. 1)*1E6
DO -2, NW

TP(I) = T(NV,I)*1.E6
VPART(I)=Y(NV. I)

END DO
YMAX-O. 0
DO I-1,NW

IF (VPART(I). GE. VMAX) VMAX-VPART(I)
END DO
WRITE(6,850) VMAX
PRINT*, 'ENTER THE MAXIMUM ORDINATE OF VELOCITY'
READ(5.*) YHI
VLO. 0
TMIN-0. 0
TMAX-T(NV, NW)*1. E6
CALL WAVGRAF(TP. TMIN. TMAX, VPART, VLO. VHI. NW, 1.15, 1.LINLABEL.

*XLADEL, YLABEL, TITLE,.TRUE. .TRUE.)
PRINT*, 'INTERESTED IN ANOTHER PROFILE PLOT, ENTER Y OR N'
READ(5. 510) ANS
IF (ANS. EQ.'Y') GO TO 75
GO TO 500

C
C PLOT PARTICLE ACCELERATION PROFILE
C
120 IF (NW.EQ.1) GO TO 117

DO J1,NW-1
AB(2*J-1)=A(NY, J)/1000.
AB(2*J)-A(NY, J)/1000.
LINLABEL(J)='

*END DO
,J= 1
DO WHILE ( J .NE. 0.

PRINT*, 'ENTER THE LINE # TO BE LABELED'
PRINT. (TYPE 0 IF NO LABELS NEEDED )

READ(5,*) J
IF ( J. NE. 0 ) THEN
PRINT 640, J
READ(5. 570) LINE
LINLABEL(J)=LINE

END IF
END DO
TPLOT(1)=T(NV. 1)*1E6
DO ,J1,NW-2

TPLOT(2*J)-T(NV, J+1)*j. E6
TPLOT(2*J+ )=T(NV, J+1)*l. E6

END DO
TPLOT(2'.NW-1)in(T(NY,NW-1),DELTR)1. E6
MNW-NW*2
AMAX-0. 0
DO I11MNW

IF (AB(NV,I).GE.AMAX) AMAX=AD(NVI)/1000.
END DO
WRITE(6,1100) AMAX
PRINT*, 'ENTER THE MAXIMUM ORDINATE OF AMPLITUDE'
READ(5,*) AHI
TITLE- '$PARTICLE ACCELERATION PROFILE$'
XLADEL='*Time (secXl. E6)0'
YLABEL'I$Accoloration (kin/s/s)$'
TMIN-0 0
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TMAX-T(NV, NW)*1. E6
CALL WAVQRAF(TPLOT. TMIN. ThAX. AD.ALa.AHI MNW. 1.40 1. LINLADEL.

*XLADEL, YLABEL. TITLE . TRUE. . .TRUE.)
PRINT*. 'INTERESTED IN ANOTHER PROFILE PLOT, ENTER Y OR No
READ(5. 510) ANS
IF (ANS. EQ. 'Y') GO TO 75
0O TO 500

117 WRITE(6,550)
GO TO 500

C
C PLOT THE STRESS TIME PROFILE
C
125 IF (NW.EQ. 1) G0 TO 117

DO J=1.NW
LINLADEL(J)-'
PSTRES(J)=STRESCNV, J)
TP(J)-TCNV. J)*l. E6

END DO
STRMAX=0. 0
DO I-1.NW

IF (STRES(NY, I). GE. STRMAX) STRMAX-STRES(NV. I)
END DO
WRITE(6, 950) STRMAX
STRLO=0. 0
PRINT*. 'ENTER THE MAXIMUM ORDINATE OF STRESS'
READ(5,*) STRHI
TITLE= 'SSTRESS PROFILES'
XLABEL='STime (secXl. Ed,)*
YLABEL='SStress (psi)$'
J- 1
DO WHILE C J .NE. 0.)

PRINT*, 'ENTER THE LINE *TO BE LABELED'
PRINT*. '(TYPE 0 IF NO LABELS NEEDED )l
READC5,*) J
IF ( J NE. 0 ) THEN
PRINT 640, .J
READ(5. 570) LINE
LINLABEL(J)=LINE

END IF
END DO
TMIN=0. 0
TMAX=T(NV. NW)*1. E6
CALL WAVGRAF(TP. TMIN. TMAX. PSTRES. STRLO. STRHI. NW. 1,15. 1.

*LINLADEL. XLABEL. YLABEL, TITLE,. TRUE. ..TRUE.)
PRINT*, 'INTERESTED IN ANOTHER PROFILE PLOT. ENTER Y OR N'
READ(5. 510) ANS
IF CANS. EQ. 'Y') GO TO 75
GO TO 500

C
C PROBABILISTIC CALCULATIONS
C
135 IF (NR.EQ.1) THEN

PRINT*, 'CANNOT REQUEST PROBABILISTIC CALCULATIONS WITH NR-1'
GO TO 500

END IF
190 PRINT*,'

PRINT*. 'ENTER DEPTH PARAMTER < N > FOR THE PROBABILISTIC PLOTS'

PRINT*,'
READ(5,*) NV
XCURNT-NV*GL/ 40.
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PRINT 80, XCURNT
DO J - 1.NW
TAVQ(J)in((T1(NVJ),T2(NVJ)+T3(NV.J)+T4(NV.J))/4.).I. E&

C
C AMPLITUDE CALCULATIONS
C

EA(J)-(A1(NV. J)+A2(NV. J).A3(NV, J)+A4(NV. J) )/4.
EA2-(AI (NV. J)**2.A2(NV, J)**2+A3(NV, J)**2+A4(NV. J)**2)/4.
SA-SORT (EA2-EA ( J)**2)
AP (J) =EA (J) +SA
AM(J)=EA4J)-SA

c
C STRESS CALCULATIONS
C

ES(J)in(SI(NV.J)492(NV, J)+S3(NV.J)+S4(NV.J))/4.
SPLOT(J. I)=ES(J)
ES2-(SI(NV. J)**2+S2(NV. J)**2+83(NV. J)**2+S4(NV. J)**2)/4.
SS-SQRT(ES2-ES(J)**2)
SP(J)-ES(J)+SS
SPLOT(J.2)=SP(J)
SM(J)inES(J)-SS
SPLOT(J. 3)-SM(J)

C
C VELOCITY CALCULATIONS
C

EV(J)-(VI (NV. J)+V2(NV, J)+V3(NV. J).V4(NV. J) )/4.
EV2=(V1 (NV. J)**2+V2(NV, J)**2+V3(NV. J)**2+V4(NV, J)**2)/4. 0
VV(J, I)=EV(J)
SV=SQRT (EV2-EV ( J) **2)
VP(J)-EV(J)+SV
VV(J,2)=VP(J)
VM(J)=EV(J)-SV
VV(J, 3)-VM(J)

C
C DISPLACEMENT CALCULATIONS
C

ED(J)-(Dl (NV, J)+D2(NV, J)+D3(NV, J)+D4(NV, J) )/4. 0
DD(J. 1)-ED(J)*I. E6
ED2=(DI (NV, J)**2+D2(NV, J)**2+D3(NV. J)**2+D4(NV. J)**2)/4. 0
SD=SQRT (ED2-ED (J) **2)
DP(J)-ED(%J)4SD
DD(J. 2)-DP(J)*l. E6
DM(J)-ED(J)-SD
DD(J, 3)-DM(J)*I. E6

END DO
C
C MODIFY AND RE-ASSIGN THE AMPLITUDE AND TIME ARRAYS
C

DO I-i. NW-I

APLOT(2*I, 1)EA(I)/000.

APLOT(2*1-1 2)-AP(I)/1000.
-- APLOT(2*1,2)inAP(I)/IO00.

APLOT(2*1-1, 3)-AII(I)/I000.
APLOT(2*I. 3)-AM(I)/I000.
LINLADEL(I)n'

END DO
TPLOT(lI)-TAVG( 1)
DO 1-I.NW-2
TPLOT(2# )*TAVG( 1+1)

A-26



TPLOT(2*I+i )-TAVG( 1+1)
END DO

TMIN-O. 0
TMAX=T(NV, NW-i )*l. EO6
TPLOT(2*NW-1 )mTAVO (NW-I ).DELTR*1.E
ALO. 0
DLO. 0
VLO-0. 0
SLO. 0
PRINT*,'
PRINT*, 'AVAILABLE PROBABILISTIC OPTIONS ARE'
PRINT*,'
PRINT*, 'I. AMPLITUDE PROFILE PLOT'
PRINT*,II
PRINT*, '2. VELOCITY PROFILE PLOT'
PRINT*, I'
PRINT*, '3. STRESS PROFILE PLOT'
PRINT*,' '

PRINT*, '4. DISPLACEMENT PROFILE PLOT'
PRINT*,'
PRINT*, 'ENTER THE OPTION NUMBER'
READ(5, 580) JF
G0 TO (210,220,230,235) JF

210 TITLE-'$PROBABILISTIC AMPLITUDE PROFILE$'
XLADEL='STimo (secXl. E6)$'
YLABEL='SAMPLITUDE (kin/s/s)*'
APL. 0
NNW-(NW-i )*2
DO J-1,3

DO I=1.NNW
*IF'(APLOT(I.J).GE.APL) APL-APLOT(I,J).-

END DO
END DO
PRINT 1110, APL
PRINT*, 'ENTER MAXIMUM ORDINATE OF PROBABILISTIC AMPLITUDE'
READ(5,*) AHI
J= 1
DO WHILE ( J NE. 0)
PRINT*, 'ENTER THE LINE * TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )

READ(5.*) J
IF ( J NE. 0 ) THEN
PRINT 640, J
READ(5, 570) LINE
LINLABEL(J)-LINE

END IF
END DO
CALL WAVGRAF(TPLOT, TMIN, TMAX. APLOT, ALO. AHI. NNW. 3,30,3,

*LINLABEL, XLADEL, YLADEL, TITLE,. TRUE. ,. TRUE. )
GO TO 520

C
220 TITLE-'$PROBABILISTIC VELOCITY PROFILE$'

XLADEL'S$Time (secXl. E6)$'
YLADEL-'*Volocitj (in/sec)$'
VPL. 0
DO J-1.3

DO I -i1,NW
IF (VV(I,J).GE.VPL) VPLWV(I.J)

END DO
END DO
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PRINT 1120, VPL
PRINT*, 'ENTER MAXIMUM ORDINATE OF PROBABILISTIC VELOCITY'
READ(5,*) YHI
J= 1
DO WHILE ( J .NE. 0)

PRINT*, 'ENTER THE LINE * TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )'
READ(5,*) J
IF ( J .NE. 0 ) THEN
PRINT 640, J
READ(5. 570) LINE
LINLADEL(J)-LINE

END IF
END DO
CALL WAVGRAF( TAVO. TMIN, TMAX. VY.VLO. VHI, NW. 3.15, 3.LINLABEL

5, XLABEL, YLABEL, TITLE,.TRUE.,. .TRUE. )
G0 TO 520

c
230 TITLE- '$PROBADILISTIC STRESS PROFILE$,

XLADEL'S$Time (secXl. E6)*$'
YLABEL='SStross (ksi)$'
SPL. 0
DO J-1,3

DO I=1, NW
IF (SPLOT(IJ).GE.SPL) SPL-SPLOT(I,J)

END DO
END DO
PRINT 1130, SPL

16M PRINT*, 'ENTER THE MAXIMUM ORDINATE OF STRESS'
Im READ(5. a) SHI

~J= 1
DO WHILE C JNE. 0

PRINT*, 'ENTER THE LINE 0 TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )'
READ(5,*) J
IF ( J1 NE. 0 ) THEN
PRINT 640, J
READ(5. 570) LINE
LINLADEL(J)-LINE

END IF
END DO
CALL WAVGRAF(TAVQ. TMIN. TMAX. SPLOT, SLO. SHI, NW, 3.15,3. LINLADEL

0, XLABEL, YLABEL. TITLE,.TRUE. .TRUE.)
00 TO 520

235 TITLE- '$PRODADILISTIC DISPLACEMENT PROFILE$'
XLADEL='STime (secXl. E6)$'
YLABEL='*Displacemant (inXI. E&)S'
DPL. 0
DO J-1,3

DO I=1,NW
IF (DD(I.J).GE.DPL) DPLDOD(I#J)

END DO
END DO
PRINT 1140. DPL
PRINT*, 'ENTER THE MAXIMUM ORDINATE OF DISPLACEMENT'
READ(5, a) DHI
J-1
DO WHILE ( J NE. 0)

PRINTe. 'ENTER THE LINE 0 TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED )'
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READ (5,*) J
IF ( ,J .NE. 0 ) THEN
PRINT 640, J
READ(5. 570) LINE
LINLABEL(J)-LINE

END IF
END DO
CALL WAVGRAF( TAVO. TMIN. THAX.DD. DLO. HoNNW.3. 15. 3,LINLABEL

S. XLABEL. YLADELD TITLE,. TRUE.,.TRUE.)
GO TO 520

C
C PLOT THE VOLUMIE DISTRIBUTION FUNCTION

130 TITLE='SVOLUME DISTRIBUTION FUNCTION$'
XLABEL='*Depth (in)$'
YLADEL= '$Nu Function$'
J-1I
DO WHILE ( J .NE. 0)

PRINT*, 'ENTER THE LINE # TO BE LABELED'
PRINT*, '(TYPE 0 IF NO LABELS NEEDED)'
READ(5.*) J
IF ( J .NE. 0 ) THEN
PRINT 640, J
READ(5. 570) LINE
LINLABEL(J)-LINE

END IF
END DO
CALL WAVGRAF(X,..0X(L).C3.5, 1.0.L. 1.3000' 15,LINLABEL,

#XLABEL. YLABELJ TITLE, .TRUE. . .TRUE.)
GO TO 500

C. .
C PLOT THE MU COEFFICIENT OF AMPLITUDE
C

140 C1MIN=200.
C 1MAX=-200.
DO J=1.NW

DO I=I,L
IF (C1(IJ).LE.C1MIN) CIMIN=CI(I.J)
IF (CI(IJ).GE.C1MAX) C1MAX=C1(I,J)

END DO
END DO
WRITE(6,700) CIMIN,C1MAX
PRINT., ENTER LOWER & UPPER Y-COORDINATES OF THE GRAPH'
READ(5.*) YLOYHI
TITLE= 'SMU-COEFFIC lENT OF AMPLITUDE$'
XLABEL-'SPropagation Dittance (in)$'
YLABEL'S$Mu-Coofficient (1/in)$'

CALL WAVGRAF(X,.. 0X(L).C1.YLO.YHIL. 1,3000. 15,LINLABEL,
#XLADEL. VLABEL, TITLE,.TRUE. ,. TRUE.)
GO TO 500

C
C PLOT THE KAPPA COEFFICIENT OF AMPLITUDE
C

150 C2MIN-200.
C2MAX--200.
DO J-I,NW

DO I11L
IF (C2(1,J).LE.C2MIN) C2MIN-C2(I,J)
IF (C2(1,J).GE.C2MAX) C2MAX-C2(I.J)

END DO
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END DO
WRITE(6, 750) C2MIN. C2MAX
PRINT*, 'ENTER LOWER & UPPER Y-COORDINATES OF GRAPH'
READ(5.*) YLO#YHI

TITLE-'OKAPPA-COEFFICIENT OF AMPLITUDEI
XLADEL-'*Propagatian Distance (in)$'
YLADEL-'$K-Coofficient (sac 2/in 2)$'

CALL WAVGRAF(X,.. 0X(L),C2,YLG,YHIL. 1.3000. 15,LINLABEL,
*XLADEL, YLABEL, TITLE,.TRUE.,.TRUE. )
GO TO 500

C
C MAIN ROUTINE COMPUTATION AND GRAPHICS ENDS HERE
C
C WRITE OUTPUT ON A DATA FILE
C
200 OPEN(UNIT-1,FILE-'DATA'. STATUS-'NEW')

WRITE( 1.240)
240 FORMATfiX. 'N',7X. 'X(N)',7X, 'UREAL'.7X. 'U(N)',7X, 'A',7X. 'AR'.

#7X, 'CI(NJ)'.7X. 'C2(N,J)'.7X, 'C3(NJ)')
DO 400 J-1.NW
DO 300 N=1,L
WRITE(1,250) N. X(N).UREAL(NJ),U(N,J),A(NJ),AR(N.J),C1(N,J),

#C2(N. J). C3(N. J)
250 FORMAT(IX. 14, 8E13. 5/)
300 CONTINUE
400 CONTINUE

CLOSE(CUNIT-1)
500 WRITE(6,*) 'WOULD LIKE TO CONTINUE, ENTER Y OR N'

READ(5. 510) ANS
510 FORMAT(A3)

IF(ANS. EQ. 'Y')GO TO 72
IF(ANS. EQ .'N') 0O TO 630
IF((ANS. NE. 'Y').AND. (ANS. NE. 'N')) GOTO 500

520 PRINT*, 'WOULD LIKE ANOTHER PROBABILISTIC PLOT'
READ(5, 540) PANS
IF(PANS.EQ. 'Y') GO TO 190
IF(PANS. EQ. 'N') GO TO 500
IF((PANS. NE. 'V').AND. (PANS. NE. 'N')) GOTO 520

540 FORMAT(A3)
550 FORMAT(IX, MORE THAN 2 AMPLITUDES NEEDED TO MAKE THIS PLOT~')
580 FORMAT(215)
570 FORMAT(A20)
590 FORMAT(112)
600 FORMAT( IX, 'NOTE: MAX. ALLOWABLE IN FOR THIS RUN IS - ', 14)
630 STOP
840 FORMAT(1X, ENTER THE LABEL($--$) OF LINE', 12)
850 FORMAT(115)
690 FORMATUIX, 'CURRENT DEPTH IS X -'.FS. 5.'inch')
700 FORMAT(IX, 'MINIMUM MU -',F1. 5/

oix, 'MAXIMUM MU -n',F10.5)
750 FORMAT(1X, 'MINIMUM RAPA -',F1. 5/

*ix, 'MAXIMUM RAPA in',F10.5)
760 FORMAT(IX, 'ENTER THE <N> VALUE CORRESPONDING TO DEPTH REQUIRED,)
800 FORMAT(IX, 'AMPLITUDE('. 12') -',E13. 5)
950 FORMAT(I, 'MAX. PARTICLE VELOCITY '.,F10. 5)
900 FORMAT(MIX'MINIMUM ACTUAL SPEED -1,F1. 5/

*IX. 'MAXIMUM ACTUAL SPEED -',F10.5)
950 FORMAT(1X. MAXIMUM STRESS -',FIO.4)
1000 FORMAT(IX,'MAXIMUM AVERAGE SPEED -n'.F10.5,/)
1050 FORMAT(1X, MAXIMUM PARTICLE DISPLACEMENT -'.FU.4/)
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1100 FORMAT(IX. 'MAXIMUM DETERMINISTIC AMPLITUDE =',FIO.S,/)
1110 FORMAT(1X. 'MAXIMUM PROBABILISTIC AMPLITUDE -',FB.4/)
1120 FORMAT(IX. 'MAXIMUM PROBABILISTIC VELOCITY -',FB.4/)
1130 FORMAT1IX.'MAXIMUM PROBABILISTIC STRESS -'.F9.4/)
1140 FORMAT(IX. 'MAXIMUM PROBABILISTIC DISPLACEMENT -'&FB.4/)

END
SUBROUTINE GAUSS ( ENUA.JFDKKDNFDZLXUBAR)

C GAUSS-LEGENDRE QUADRATURE FOR CALCULATION OF PROPAGATION TIME*
C AND WAVE VELOCITY USING FOUR-POINT FORMULA FOR INTEGRATION

C
REAL ETA. FKCH, ENUA, ENUB. NUZX. UF. FXCH, ENU. ENUX. X
DIMENSION ETA(4), NUZX(4), FXCH(4), ENU(4), ENUX(4),

#UF(4), FKCH(4), PENU(4) *PNU(4)
COMMON /GRAIN/ AFFO, AFFF. DL DUM. ENUB, FLFFO. FLFFF G0, GL. GO,

*T IME

C DEFINE THE CONSTANTS AND THE WEIGHTING COEFFICIENTS
C

PI-3-141592741012573
WT1SO. 34785485
WT2=O. 65214515
ETA(1)=-0. 86113631
ETA(2)=-0. 33999104
ETA(4)=-ETA( 1)
ETA(3)=-ETA(2)

C
C DEFINE THE FUNCTION AND PERFORM THE INTEGRATION
C

DO 150 1! = 1. 4
FIKCH(I)=(ETA(I)*(X-ZL)+(X+ZL))/2. 0
GO TO (20.,30,40) KK

C
C PERIODIC VOLUME DISTRIBUTION FUNCTION
C

20 ENU(I)=ENUA+(1.-ENUA)*COS(2.*PI*FKCH(I)/GL)
NUZX(I)=((ENUA-1. O)/GL)*2. 0*PI*SIN(2. *PI*FKCH(I)/GL)
PP=FLFFO+0. 5*AFFO*NUZX (I) **2
IF(PP.LT.0.0) GO TO 150
UF( I)=SGRT(PP)
FXCH(I)=1. 0/UF(I)
GO TO 50

C
C EXPONENTIAL VOLUME DISTRIBUTION FUNCTION
C

30 PENU(1)=i. 0-Cl O-ENUB)*EXP(-31*GG*FKCH(l))
ENUX( I =(1. O-ENUB)*BB*G*EXP(-3B*GG*FK4CH(I))
TEST=FLFF0+0. 5*AFFO*ENUX (I) **2
IF(TEST.LT.0) GO TO 150

- . UF( I)=SQRT(FLFFO+0. 5*AFFO*ENUX( I)**2)
FXCH(I)=1. 0/UF(I)
GO TO 50

C
C PERIODIC AND EXPONENTIAL COMBINED VOLUME DISTRIBUTION FUNCTION
C

40 ENU(I)=ENUA+(1.-ENUA)*COS(2.*PI*FICH(I)/GL)
NUZX(I)=((ENUA-1.0)/GL)*2.0*PI*SIN(2.*PI*FKACH(I)/GL)
PENU(I)-1 O-(1 O-ENUB)*EXP(-BB*GG*FKCH(I))
ENUXCI )-(1. O-ENUB)*BB*GG*EXP(-BB*GG*FKCHC I))
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PNU(I)=ENU(I)4IENUX(l)+PENU(I)#NUZX(l)
CHEK-FLFFO+. 5*AFFO*PNU( I)**2
IF(CHEK.LT.0) GO TO 150
UF( I) - SORT(FLFFO+0. 5*AFFO*PNU( I)**2)
FXCH(I)-1. 0/UF(I)

50 CONTINUE
100 TAUX =WTI*(FXCH(1)+FXCH(4))+WT2*(FXCH(2)+FXCH(3))

TIME - TAUX*((X-ZL)/2.O)
TIME - DUM + TIME

C
C CALCULATE THE AVERAGE WAVE SPEED
C

UBAR - X/TIME
COTO 200

150 WRITE(6,180) NF,JF
18O FORMAT(1X. 'INPUT IS INCOMPATIBLE WITH REAL WAVE SPEED IN GAUSS'/

oix, 'LOOPING PARAMETER N =',I5,
*IX. 'WAVE AMPLITUDE NUMBER J -', 13)
STOP

200 RETURN
END
SUBROUTINE RUNKUT (AMP. ENUA. H. K.N.RKAPA. RMU. RVDFUN, RWS. X. O)

C SUBROUTINE RUNGE-KUTTA CALCULATES THE WAVE AMPLITUDE
C IN THE GRANULAR MEDIA

C
REAL AMP, BD.ENU. ENUX. ENUXX. ENUZ, ENUZZD H.PENU. RKAPA. RMU RVDFUN,

*RWS, X, VO
COMMON /GRAIN/ AFFO, AFFF. BB, DUM, ENUB, FLFFO, FLFFF, G, L. GO TIME
COMMON /CONTRL/ P,P1,Q,GI
DATA P1/3. 141592741012573/

C
C DEFINE THE VOLUME DISTRIBUTION FUNCTIONS AND THEIR DERIVATIVES
C
C PERIODIC VOLUME DISTRIBUTION FUNCTION
C

ENU(X)-(ENUA+(1. -ENUA)*COS(2. *PI*X/QL))*P+PI
ENUZ(X)-(-2. *PI*(l. -ENUA)*91N(2. *PI*X/GL)/GL)*P
ENUZZ(X)=(-4. *(PI**2. )*(l. -ENUA)*COS(2. *PI*X/GL)/(GL**2))*P

C
C EXPONENTIAL VOLUME DISTRIBUTION FUNCTION
C

PENU(X)=(1.O-(1.O-ENUB)*EXP(-BB*QG*X))*0,Q1
ENUX( X)=( (1.O-ENUD)*DB*GG*EXP(-BS*GG*X) )*Q
ENUXX( X)-(-( 1. 0-ENUB)*BD**2*QG**2*EXP(-BB*GG*X) )*Q

C
C PERIODIC AND EXPONENTIAL VOLUME DISTRIBUTION FUNCTION COMBINED
C

PNU(X)=ENU(X)*PENU(X)
PNUX(X )ENU(X)*ENUX(X)+PENU(X)*ENUZ(X)
PNUXX(X)-ENU(X)*ENUXX(X)+PENU(X)*ENUZZ(X),2. *ENUZ(X)*ENU)X(X)

C
C COMPUTE THE WAVE AMPLITUDE AND THE CONSTANTS MU & KAPA
C

UFSQ( X)-(FLFFO+O. 5*AFFO*PNUX(X)**2)
FMU( X)-(UFSG(X )/PNU( X )AFFO*PNUXX(X)/2. 0)*PNUX(XK)/(2. *UFSQI(X))
CKAP(X)--(FLFFF.AFFF*PNUX(X)**2/2. )/(2. *O*UFSQ(X)**2)
FC(X, Z)-CKAP(X)*Z**2-FMU(X)*Z
AK I-FC ( , VO)
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AK2-FC(X+H/2. 0,YD+H*AKI/2. 0)
AK3-FC(X.H/2. 0.YU+H4IAK2/2. 0)
AK4-FC (X+H. YO+H*AK3)
YO - YO+H*( AKI+2. O*AK2+2. 0*AK3+AK4) /6. 0
AMP-V
RMU-FMU( X)
RKAPA-CKAP (X)
RVDFUN-PNU(X)
IF (UFSG(X).LT.0) GO TO 10
RWS-SQRT(UFSO(X) )/1000.
GO TO 30

10 WRITE(6.20) N,K
20 FORMAT(1X, 'INPUT IS INCOMPATIBLE WITH REAL WAVE SPEED IN RUNKUT'/

*lX, 'LOOPING PARAMETER IN -',15,
gIX. 'WAVE AMPLITUDE NUMBER J -'.,13)
STOP

30 RETURN
END

C

SUBROUTINE WAVORAF(X. XMININP. XMAXINP, Y.YMININP, YMAXINP N. M.
- NORIG, MORIG, LINLADEL, INDAX, DEPAX, TITLE, INDEVEN.
- DkPEVEN)

C ***.*******4**********.********

C
C To draw a line graph with multiple plots on an 9Xli page,
C using DI-3000 graphics subroutines
C

05C N: Number of values in each set
nuC M: Number of sets of dependent values

C NORIG O3riginal column dimension of the value arrays
C MORIG: I row. Is it H I. o
C LINLABEL: Character string labels of each ',et of values
C INDAX- Character string of independent axis label
C DEPAX: Is"1 o dependent U

C TITLE: toI title of graph
C (Note: all character strings should be inclosed in a
C delimiter mark, such as '$graph$')
C INDEVEN: Logical variable which is TRUE. if the independent
C axis should be extended to terminate at even divisions.
C DEPEYEN: Logical variable which is .TRUE. if the dependent
C axis should be extended to terminate at even divisions.
C VECTOR: Arrayj for graph information storage
C VSIZE: Size of VECTOR array
C RATIO Aspect ratio of the graphics device
C NSET: Data set counter
C XDIVMAX: Maximum number of independent axis divisions
C YDIYMAX. Maximum number of dependent axis divisions
C SPAN: Range of axes (maximum value minus minimum value)
C ORDER: order of the axis increments
C RESOLUTION: Minimum even incremented resolution of the axis
C

REAL X( NORIG ), XMININP. XMAXINP. Y( NORIO, MORIG ), YMININP.
- YMAXINP
INTEGER N. M, NORIO, MORIG
CHARACTER LINLABEL( 10)*25, INDAX*50, DEPAX*50, TITLE*50
LOGICAL INDEVEN, DEPEVEN
REAL ENTER, OUTER, XMIN, XMAX, YMIN. YMAX, RATIO. SPAN. ORDER,
* RESOLUTION, XINCREMENT, YINCREMENT
INTEGER VECTOR(15OQO). VSIZE, NSET, XDIVMAX, YDIVMAX
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DATA VSIZE/15000/, XDIVMAX/5/, YDIVMAX/10/
XMIN-XMININP
XMAX-XMAXINP
YMIN=YMININP
YMAX=YMAXINP

C
C Initialize GRAFMAKER and DI-3000
C

CALL JCHINI( .TRUE., 1
CALL JCHART( VECTOR, VSIZE
CALL JASPEK( 1. RATIO )
CALL JVSPAC( -1.0, 1.0, -RATIO, RATIO
CALL JGRAPH( VECTOR, VSIZE, I )

C
C Define title and text characteristics.
C

CALL JXTEXT( VECTOR, VSIZE, 1, 5, 0.0, 1.0, 0 )
CALL JTXBOX( VECTOR, VSIZE, 0, 0, 1 )
CALL JSTNOT( VECTOR, VSIZE, 1, 1, TITLE
CALL JPONOT( VECTOR, VSIZE, 1, 1, 500.0, 980.0 )
CALL JTXHGT( VECTOR, VSIZE, 20. 0, 0. 0, 0. 0

C
C If desired, redefine the dependent axis minimum and
C maximum for even axes
C

SPAN = YMAX - YMIN

IF (SPAN. LT. IE-6) THEN
ORDER = LOGIO( SPAN*1E12/12.0 ) - LOGIO( FLOAT( YDIVMAX )
ELSE

ORDER - LOIO( SPAN ) - LOQIO( FLOAT( YDIVMAX
END IF
IF ( ORDER .LT. 0.0 ) ORDER = ORDER - 1.0
RESOLUTION - 10. 0 ** INT( ORDER )
IF ( SPAN / FLOAT( YDIVMAX ) .LE. RESOLUTION ) THEN
YINCREMENT - RESOLUTION

ELSE IF ( SPAN / FLOAT( YDIVMAX ) .LE. 2.0 * RESOLUTION ) THEN
YINCREMENT = 2.0 * RESOLUTION

ELSE IF ( SPAN / FLOAT( YDIVMAX ) .LE. 5.0 * RESOLUTION ) THEN
YINCREMENT - 5.0 * RESOLUTION

ELSE IF ( SPAN / FLOAT( YDIVMAX ) .LE. 10.0 * RESOLUTION') THEN
YINCREMENT - 10.0 * RESOLUTION

ELSE
YINCREMENT - 20. 0 * RESOLUTION

END IF
IF ( INDEVEN ) THEN

IF ( YMIN GE. 0 ) THEN
YMIN - YINCREMENT * FLOAT( INT( YMIN / YINCREMENT + 0.01 ) )

ELSE
YMIN - YINCREMENT * FLOAT( INT( YMIN / YINCREMENT - 0.99 ) )

END IF
IF ( YMAX .QE. 0 ) THEN
YMAX - YINCREMENT * FLOAT( INT( YMAX / YINCREMENT + 0.99 ) )

ELSE
YMAX - YINCREMENT * FLOAT( INT( YMAX / YINCREMENT - 0.01 ) )

END IF
END IF
CALL JSTVAX (VECTOR, VSIZE, 1, 1, YMIN, YMAX, DEPAX)
IF ( NOT. INDEVEN ) THEN
YMIN - YMIN + YINCREMENT
IF ( YMIN GE. 0 ) THEN
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YMIN - YINCREMENT * FLOAT( INT( YMIN / YINCREMENT + 0. 01 )
ELSE

YKIN - YINCREMENT * FLOAT( INT( YMIN / YINCREMENT - 0.99 ) )
END IF
YMAX = YMAX - YINCREMENT
IF ( YMAX .GE. 0 ) THEN
YMAX = YINCREMENT * FLOAT( INT( YMAX / YINCREMENT + 0.99 )

ELSE
YMAX - YINCREMENT * FLOAT( INT( YMAX / YINCREMENT - 0.01 )

END IF
END IF
CALL JTIC (VECTOR, VSIZE, 1, 1, 1, YMIN, YMAX, YINCREMENT)
CALL JTCATR (VECTORVSIZEo 1,1, 10,. 0O. 0,0)

C
C If desired, redefine the independent axis minimum and
C maximum for even divisions
C

SPAN = XMAX - XMIN
IF (SPAN. LT. 1E-6) THEN
ORDER = LOG1O( SPAN*lEI2/12.0 ) - LOGlO( FLOAT( XDIVMAX
ELSE
ORDER = LOG1O( SPAN ) - LOGlO( FLOAT( XDIVMAX ) )

ENDIF
IF ( ORDER .LT. 0.0 ) ORDER - ORDER - 1.0
RESOLUTION = 10.0 ** INT( ORDER )
IF ( SPAN / FLOAT( XDIVMAX ) .LE. RESOLUTION ) THEN
XINCREMENT = RESOLUTION

ELSE IF ( SPAN / FLOAT( XDIVMAX ) LE. 2.0 * RESOLUTION ) THEN
XINCREMENT = 2.0 * RESOLUTION

ELSE IF ( SPAN / FLOAT( XDIVMAX ) LE. 5.0 * RESOLUTION ) THEN
XINCREMENT - 5.0 * RESOLUTION

ELSE IF ( SPAN / FLOAT( XDIVMAX ) .LE. 1-.. 0 * RESOLUTION ) THEN
XINCREMENT - 10.0 * RESOLUTION

ELSE
XINCREMENT = 20.0 * RESOLUTION

END IF
IF ( INDEVEN ) THEN

IF ( XMIN .GE. 0 ) THEN
XMIN = XINCREMENT * FLOAT( INT( XMIN / XINCREMENT + 0.01 ) )

ELSE
XMIN = XINCREMENT * FLOAT( INT( XMIN / XINCREMENT - 0.99 ) )

END IF
IF ( XMAX .GE. 0 ) THEN

XMAX = XINCREMENT * FLOAT( INT( XMAX / XINCREMENT + 0.99 ) )
ELSE

XMAX = XINCREMENT * FLOAT( INT( XMAX / XINCREMENT - 0.01 ) )
END IF

END IF
CALL JSTHAX( VECTOR, VSIZE, 1, 2, XMIN, XMAX, INDAX
IF ( NOT. INDEVEN ) THEN
XMIN = XMIN + XINCREMENT
IF ( XMIN GE. 0 ) THEN

XMIN - XINCREMENT * FLOAT( INT( XMIN / XINCREMENT + 0.01 )
ELSE

XMIN - XINCREMENT * FLOAT( INT( XMIN / XINCREMENT - 0.99 )
END IF
XMAX - XMAX - XINCREMENT
IF ( XMAX GE 0 ) THEN

XMAX - XINCREMENT a FLOAT (INT (XMAX / XINCREMENT + 0.99))
ELSE
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XMAX - XINCREMENT * FLOAT (INT (XMAX / XINCREHENT - 0.01))
END IF

END IF
C
C DESCRIBE TWO TICK MARK GROUPS TO BE USED ON THE X-AXIS
C

CALL ,JTIC (VECTOR, VSIZE, 1, 2, 2, XMIN, XMAX, XINCREMENT)
CALL JTCATR(VECTORoVSIZE, 1,22,0.0,15.0,O)
ENTER=XMIN+X INCREMENT/2. 0
OUTER-XMAX-XINCREMENT/2. 0
CALL JTIC (VECTOR, VSIZE, 1. 2, 3. ENTER, OUTER, XINCREMENT)
CALL JTCATR (VECTORVSIZE, 1,2,3,0.07.5,0)
CALL ,JTCPAT (VECTORVSIZE, 1,2,3,10,20)

C
C OPEN UP A LEGEND
C

CALL JTXBOX( VECTOR, VSIZE, 0. 0, 1
CALL JSTLGD( VECTOR VSIZE, 1, '$$'
CALL JLGPOS( VECTOR, VSIZE, 1, 500.0, 860.0
CALL JTXHGT( VECTOR, VSIZE, 17.0. 0.0, 0.0

C
C PASS THE DATA SETS TO GRAFMAKER
C

CALL JRDATA (VECTOR, VSZZE, 1, X, N)
CALL JINDEP (VECTOR, VSIZE, 1, 1)
DO NSET - 1, M

CALL JRDATA ( VECTOR, VSIZE, NSET + 1, Y( 1, NSET ), N
CALL JDEPEN( VECTOR. VSIZE, 1, NSET, NSET + 1

C
C DEFINE PLOT LINE CHARACTERISTICS
C

CALL JXLINE( VECTOR, WVSIZE, NSET, NSET, 16383, (NSET-1)*10,
- 16383 )

CALL JDTATR( VECTOR, VSIZE, 1, NSET, 0, 0, NSET )
C
C MAKE A LEGEND ENTRY
C

IF ( LINLABEL( NSET )(1:1) .EG. 'S' AND. LINLABEL( NSET )(2:2)
- .NE. '$' ) CALL JSDLGD( VECTOR, VSIZE, 1, NSET,
- LINLABEL( NSET
END DO

C
C SHOW CHART
C

CALL JCHSHW (VECTORVSIZE, -0.70, 0.70, -0.55, 0.55)
C
C PAUSE FOR VIEWING
C

CALL JPAUSE( 1
C
C Terminate GRAFMAKER
C

CALL JCHTRM( . TRUE. )
RETURN
END
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